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Bayesian Inference via Filtering Equations
for Ultra-High Frequency Data (I): Model and Estimation

Grace X. Hu∗, David R. Kuipers †, and Yong Zeng ‡

Abstract. We propose a general partially-observed framework of Markov processes with marked point
process observations for ultra-high frequency (UHF) data. The model well fits the stylized
facts of UHF data in both macro- and micro-movements, subsumes important existing models,
and incorporates the influence of other observable economic or market factors. We develop
the corresponding Bayes estimation via filtering equation to quantify parameter uncertainty.
Namely, we derive the normalized filtering equation to characterize the evolution of the posterior
distribution, present a weak convergence theorem, and construct consistent, easily-parallelizable,
recursive algorithms to calculate the joint posteriors and the Bayes estimates for streaming UHF
data. Moreover, an easy-to-check sufficient condition for the consistency of the Bayes estimators
is provided. The general estimation theory is illustrated by four specific models built for U.S.
Treasury Notes transactions data from GovPX. We show that in this market, both information-
based and inventory management-based motives are significant factors in the trade-to-trade price
volatility.
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1. Introduction. Electronic trading in all major world financial markets has routinely
generated streams of transactions data. Such time-stamped (“tick”) data, containing the
most detailed information for the price evolution, are referred to as ultra-high frequency
(UHF) data by Engle in [24]. The direct modeling and analysis of UHF data is essential
for insight concerning market microstructure theory, for monitoring and regulating markets
and for conducting risk management.

There are two stylized facts in UHF data. First, the arrival times are irregular and
random. Second, UHF data contain microstructure (or trading) noise due to price discrete-
ness, price clustering, bid-ask bounce and other market microstructure issues. UHF data
can be represented by two kinds of random variables: the transaction time and a vector of
characteristics observed at the transaction time. Hence, UHF data are naturally modeled
as a Marked Point Process (MPP): a point process describes the transaction times and
marks represent, for example, price and volume associated with a trade. However, there
are two different views on how to treat the observations, leading to different formulations
of the statistical foundation for analyzing UHF data.
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2 BAYESIAN INFERENCE VIA FILTERING EQUATIONS (I)

The first view is well expressed in [24] and is natural from the viewpoint of time series.
Because traders choose to transact at random times during the trading day, due to both
information-based and liquidity-based motives ([49]), this school of econometricians models
the duration between trades as a stochastic phenomena resulting in an irregularly-spaced
time series. An Autoregressive Conditional Duration (ACD) model is proposed in [25] for
analysis. Variants of the ACD model and joint models of duration and return (or price)
have been developed with the ability to account for the impact of market and economic
factors on the timing of trades (See [50] and [26] for surveys).

The second view, normally perceived from the standpoint of stochastic process, is to
treat the transaction observations as an observed sample path of an MPP. This view was
advocated in [56], where the data is treated as a collection of counting process points, a spe-
cial case of MPP observations. In this framework, an asset’s intrinsic value process, which
connects to the usual models in option pricing and the empirical econometric literature for
price series, is assumed to be partially observed at random trading times through the prices,
which are distorted by microstructure noise. Then, the model can be formulated into a
filtering framework with counting process observations and the link to stochastic nonlinear
filtering is established. [56] and [43] develop the Bayesian inference via filtering equations
for this model to accommodate the computational burden imposed by this approach.

Motivated by unifying these two views and combining their strengths, we propose a gen-
eral filtering framework for ultra-high frequency data with two equivalent representations.
Just as ARIMA time series models have state-space representations, the first representation
can be viewed as a random observation time state-space model. The latent state process is
a continuous-time multivariate Markov process. The observation times are modeled by a
generic point process and the noise is described by a generic transition probability distri-
bution. Other observable economic or market factors are permitted to influence the state
process, the observation times, the noise and the observations.

Our proposed framework generalizes the model of [24] by adding a latent continuous-
time vector Markov process, which permits the influence of other observable economic or
market factors and has a clear economic interpretation. Compared to [56], our framework
is a generalization in several respects. Notably, the intrinsic latent value process becomes
a correlated multivariate process in our model. The observation times are driven by a
general point process with both endogenous and exogenous samplings, including but not
limited to conditional Poisson processes, proportional hazard models and ACD models.
Other observable factors are allowed to influence the latent process, the observation times
and the noise, and the mark space is generic including both discrete and continuous cases.
Moreover, the proposed framework connects to several recent literatures.

Just as a state-space model has a filtering formulation, our model also has a second
representation as a nonlinear filtering framework with MPP observations. Based on this
formulation, we develop Bayesian Inference via Filtering Equations (BIFE) for uncertainty
quantification in this paper and a companion one [39]. This paper focuses on quantifying
parameter uncertainty and the other one on quantifying model uncertainty. Namely, in
this paper, we develop the Bayes Estimation via Filtering Equation (BEFE).

To achieve this, we use stochastic nonlinear filtering technique and, under very mild
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assumptions, we derive the normalized filtering equation, which is a stochastic partial dif-
ferential equation (SPDE). The filtering equation stipulates the evolution of the joint pos-
terior distribution process, which is at the center of quantifying the uncertainty of the state
process including the related parameters. The evolving posterior measure-valued process
is of continuous time and of infinite dimension. This presents enormous computational
challenge for application.

Fortunately, like the Kalman filter, the normalized filter preserves recursiveness, which,
if properly utilized, provides the tremendous computational advantage. Then, we present
a weak convergence theorem, which gives a blueprint for constructing efficient algorithms.
Namely, we employ the Markov chain approximation method to construct consistent, easily-
parallelizable, recursive algorithms. The algorithms can carry out real-time parameter un-
certainty quantification for streaming UHF data. Furthermore, an easy-to-verify sufficient
condition for the consistency of the Bayes estimators is given.

Finally, to illustrate the application of the general model and the BEFE, we provide
an example from the finance literature involving intradaily prices observed in the market
microstructure. The specific data set we examine possesses well-known UHF properties
and is particularly amenable to the flexible form of our general model. We build four
specific models based on competing theories regarding the evolution of intraday volatility
in the U.S. Treasury note market. We exemplify how to develop a recursive algorithm for
propagating and updating the joint posterior of the state process. After calibrating the
algorithm for correct model identification using simulated data, we use the algorithms to
obtain the Bayes estimates for the four models. The estimation results show that both
information-based and inventory management-based motives are significant factors in the
trade-to-trade price volatility.

The paper is organized as follows. The next section presents the two equivalent repre-
sentations of our proposed model from the view of stochastic processes with old and new
examples. Section 3 develops the BEFE: namely, defines the joint posterior, derives the
normalized filter and present a weak convergence theorem for constructing recursive algo-
rithms. Section 4 provides an explicit example for our on-the-run U.S. Treasury 10-year
note transactions price data with simulation results. We conclude in Section 5.

2. The Model. After a brief review on MPP with proper assumptions and notations
used throughout this paper and [39], we present our framework in two equivalent repre-
sentations. The first is more intuitive and the second is a direct generalization of counting
process observations. Then, we briefly discuss the generality of the proposed model.

2.1. A Brief Review on MPP. All stochastic processes are defined on a complete
probability space (Ω,F , {Ft}t≥0, P ) with the usual hypotheses ([51]), and have with right
continuous paths with left limits (cadlag).

Recall that a marked point process Φ = {(Ti, Yi)}i≥1 is a sequence of mark point
(Ti, Yi), where the event occurrence times {Ti} form a point process with 0 ≤ T1 < T2 <
· · · < Ti < · · · < T∞, and the mark Yi = Yi(Ti) describes additional information of the
event that occurs at time Ti. Yi is a random element and takes its values in a set Y, called
a mark space. (Y,Y, µ) is a measure space with a finite measure µ (µ(Y) < ∞) and (Y, dY)
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is a complete, separable metric space.
There are two general characterizations for a marked point process via the dynamic

(martingale) approach: compensators and stochastic (or conditional) intensity kernels. The
two notions are closely related. [46] and [19, 20] provide book-length studies on the topics.
While the stochastic intensity approach is used extensively in [24], we use both approaches
in this paper.

It is convenient to view Φ = {(Ti, Yi)} as a random counting measure defined by

(2.1) Φ(dt, dy) =
∑

i≥1

δ{Ti,Yi}(t, y)d(t, y)

with Φ({0} × Y) = 0 where δ{Ti,Yi}(t, y) is the Dirac delta-function on R
+ × Y.

For B ∈ Y, let Φ(t, B) := Φ([0, t]×B), which counts the number of marked points that
are in B up to time t. Then, Φ(t, B) =

∫ t

0

∫

B
Φ(dt, dy). Let Φ(t) := Φ([0, t]×Y) = Φ(t,Y),

which is the counting process of event occurrence. Then, Φ(t) =
∫ t

0

∫

Y
Φ(dt, dy).

Definition 2.1.An Ft-predictable random measure γ mapping from Ω × B(R+) × Y to
[0,+∞] is referred to as a compensator of Φ if Φ(t, B) − γ(t, B) is an Ft-martingale for
all t ≥ 0 and B ∈ Y.

Definition 2.2.A stochastic intensity kernel λ of Φ (with respect to a measure η) is a finite
{Ft}-predictable kernel from Ω×R

+ to Y such that for all predictable f : Ω×R
+×Y → R̄,

E

∫ ∫

f(t, y)Φ(d(t, y)) = E

∫ ∫

f(t, y)λ(t, dy)η(dt).

The connection between the compensator and stochastic intensity kernel is given by

γ(d(t, y)) = λ(t, dy)η(dt).

When η is a Lebesgue measure η(dt) = dt, λ(t, B) represents the potential for another
point at time t with mark in B given Ft−, then P − a.s.,

(2.2) λ(t, B) = lim
h↓0

h−1P (Φ([t, t+ h)×B) > 0|Ft−).

As for Φ(t) = Φ(t,Y), its stochastic (or conditional) intensity is a Ft-predictable λ̄(t)
such that λ̄(t) = λ(t,Y) and the compensator of Φ(t) is λ̄(t)dt.

Finally, we define a few filtrations: FΦ,V
t (the observed filtration), Fθ,X,V

t (the filtration

for the latent Markov process), and Ft (the whole filtration). Let F
Φ,V
t = σ{(Φ(s,B), V (s)) :

0 ≤ s ≤ t, B ∈ Y},Fθ,X,V
t = σ{(θ(s),X(s), V (s)) : 0 ≤ s ≤ t}, and Ft = σ{(θ(s),X(s),

Φ(s,B), V (s)) : 0 ≤ s ≤ t, B ∈ Y}, where V is a vector of observable economic or market
factors, which can be deterministic or random as seen in Section 4. We let F = F∞ and
define Ft− = σ{(θ(s),X(s),Φ(s,B), V (s)) : 0 ≤ s < t,B ∈ Y}. Note that a Ft-predictable
process is essentially Ft−-measurable.

2.2. Representation I: Random Arrival Time State-Space Model. Like a state-space
time series model, this representation has similar components: a state process, observation
times, the observations themselves and noise. Unlike the usual state-space models, our
model has random arrival times and a continuous-time state process.
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2.2.1. The State Process. Applying a modern Bayesian idea for parameter estima-
tion, we extend the state space to include parameter space, and allows the components of
θ to potentially change in continuous time. A mild assumption is made on (θ,X).

Assumption 2.1. (θ,X) is a p +m-dimension vector Markov process that is the unique
solution of a martingale problem for a generator Av such that Mf (t) = f(θ(t),X(t)) −
∫ t

0 Avf(θ(s),X(s))ds is a Fθ,X,V
t -martingale, and f is in the domain of Av.

The generator and martingale problem approach (see, for example, [27]) furnishes a
powerful tool for the characterization of Markov processes, which includes usual determin-
istic ODE. Obviously, Assumption 2.1 is a multivariate version of Assumption 2.1 in [56],
allowing for correlation and subsuming most popular stochastic processes such as multi-
variate diffusion, jump and Levy processes employed in asset pricing theory. Because of
the inclusion of θ, our model further allows unobserved stochastic volatility and regime
switching. Moreover, we do not assume stationarity of X, which makes our assumption
less restricted than that in the literature for estimating Markov processes sampled at dis-
crete or random times via the operator approach ([36], [1], [22], [3] and [15] among others).
Furthermore, other observable factors, represented by a vector process V , are incorporated
in the state process of X through the generator, Av.

2.2.2. Observation times. T1, T2, . . . , Ti, . . ., are allowed to be a general point pro-
cess, specified by a nonnegative Ft-predictable stochastic (or conditional) intensity in the
following form:

λ̄(t) = λ̄(θ(t),X(t), V t−,Φt−, t)

where V t = V (· ∧ t) denotes the sample path of V up to time t and similarly Φt− =
{(Ti, Yi) : Ti < t}. Namely, we allow λ̄(t) to be Markovian in (θ,X, t) and non-anticipating
in V and Φ (depending on the sample paths of V and Φ up to time t−).

Clearly, a conditional Poisson process is an example. However, this form is very general
including point processes generated from endogenous sampling and exogenous sampling.
Endogenous sampling is when λ̄(t) depends on (θ(t),X(t)). Some related estimation prob-
lems are studied in [22], [15] and [52] by different methods. Exogenous sampling is when
λ̄(t) does not depend on (θ(t),X(t)), but is only FV,Φ

t -predictable. Cox model and the more
general proportional hazard formulations, the Hawkes process ([45]), and ACD models are
popular examples of exogenous sampling. We note that the case of exogenous sampling sig-
nificantly simplifies the filtering equation for posteriors and the evolution system equations
for Bayes factors, and greatly reduces the related numerical computation.

2.2.3. The Observations. The noisy observation at event time Ti, Y (Ti), takes a value
in the mark space Y and is modeled by Y (Ti) = F (X(Ti)), where y = F (x) is a random
transformation from x = X(Ti) to y = Y (Ti) specified by a transition probability distri-
bution p(dy|x). Specifically, the conditional distribution of Y (Ti) given X(Ti) = x is given
by p(dy|x; t) = p(dy|X(t); θ(t), V t−,Φt−, t) when t = Ti.

In many papers on realized volatility estimators in the presence of noise such as [4],
Y (Ti)−X(Ti) has a normal distribution with mean zero and constant variance. The noise in
[47] is additive normal with rounding. The noise in [56] includes additive doubly-geometric,
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rounding and clustering noises. These are a few examples of F (x) with p(dy|x).

In summary, the observation {Ti, Y (Ti)} forms a MPP with the predictable stochastic
intensity kernel λ̄(θ(t),X(t), V t−,Φ−, t) p(Y (t)|X(t); θ(t), V t−,Φt−, t). This representation
can be viewed as a random arrival time state-space model, or a random arrival time hidden
Markov model in a generic mark space.

When applied to financial UHF data, X becomes the intrinsic value vector process
of m assets. When m = 1, this representation is a generalization of [56], and shares
the simple economic notion that Y (Ti), the observed price at trading time Ti, is based
upon X(Ti), the intrinsic value, but is distorted by the trading noise modeled by F , the
random transformation. The proposed framework connects to the literature of Vector
AutoRegressive (VAR) structural models in market microstructure theory surveyed in [38],
and to the literature of realized volatility with microstructure noise in [58], [6], [57], [28],
[47], and [8] among many others.

2.3. Representation II: Filtering with MPP Observations. Under this representation,
(θ,X) becomes the signal, which is not directly observable, but can be partially observed
through a MPP, Φ = {Ti, Yi}i≥1. The observation is expanded to (Φ, V ), including an
auxiliary predictable process V , which can be thought of as observable economic or market
nuisance variables. The inclusion of V in the observation enables the proposed model to
study the interaction of the MPP with other observable variables. With four more assump-
tions, we formulate (θ,X,Φ, V ) into a filtering representation with MPP observations.

Let λ(t, dy) be in the form λ(t, dy; θ(t),X(t), V t−,Φt−, t).

Assumption 2.2. Under P , the stochastic intensity kernel of Φ = {(Tn, Yn)}n≥1 is given
by λ(t, dy) = λ̄(t)p(dy|X(t), t), namely,
(2.3)
λ(t, dy; θ(t),X(t), V t−, Y t−, t−) = λ̄(θ(t),X(t), V t−, Y t−, t−)p(dy|X(t); θ(t), V t−, Y t−, t−).

Note that λ̄ is a hazard rate that determines the conditional odds for the next event occur-
rence, and p(dy|X(t)) specifies the conditional distribution for the next mark occurrence
given X(t). Then, the compensator under P is γP (d(t, y)) = λ(t, dy)dt. Assumption 2.2
implies that two representations have the same stochastic intensity kernel and hence, they
are equivalent in the sense of having the same probability law by Theorems 8.3.3 and 8.2.2
in [46]. This guarantees that statistical inferences based on the latter representation are
consistent with the former.

In the next assumption, we assume the existence of a unit Poisson random measure with
mark distribution µ(dy) as a reference measure and with the crucial property under the
reference measure that the signal and the observation are independent. This assumption
is useful in deriving the filtering equations and in constructing the approximate filters in
this paper and [39].

Assumption 2.3. There exists a reference measure Q, with respect to which P is abso-
lutely continuous, namely, P << Q so that under Q

• (θ,X) and V are independent of Φ = {(Tn, Yn)}n≥1;
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• The compensator of MPP Φ is γQ(d(t, y)) = µ(dy)dt, or the corresponding stochas-
tic intensity kernel is µ(dy).

We use EQ[X] or EP [X] to indicate that the expectation is taken with respect to a
specific probability measure throughout the paper and [39].

Next is a mild assumption ensuring the existence of a reference measure Q. First, we
define the ratio of the mark distributions under P and Q as

(2.4) r(y) = r(y; θ(t),X(t), V t−, Y t−, t−) =
p(dy|X(t); θ(t), V t−, Y t−, t−)

µ(dy)
.

and the ratio of the compensators under P and Q as
(2.5)

ζ(t, y) =
γP (d(t, y))

γQ(d(t, y))
=

λ(t, dy)

µ(dy)
= λ̄(θ(t),X(t), V t−, Y t−, t−)r(y; θ(t),X(t), V t−, Y t−, t−).

Let L(t) = dP
dQ

(t) be the Radon-Nikodym derivative given below with more explanation in
[39].

L(t) = L(0) exp

{

∫ t

0

∫

Y

log ζ(s−, y)Φ(d(s, y))−

∫ t

0

∫

Y

[

ζ(s−, y)− 1
]

µ(dy)ds

}

.

Assumption 2.4. The ζ(t, y) defined in (2.5) satisfies the condition that EQ[L(T )] = 1
for all T > 0.

Sufficient conditions for the above assumption can be found in Section 3.3 of [9]. Our
final assumption is a technical condition that ensures that {Ti} is P-nonexplosive, namely,
P (T∞ = +∞) = 1 and that the filtering equations are well-defined.

Assumption 2.5.
∫ t

0 E
P [λ̄(s)]ds < ∞, for t > 0.

2.4. Generality of the Model. The section illustrates the richness of the proposed
framework, unifying the existing important models (Classes I and II), and providing new
interesting models (Class III).

Our model encompasses two classes of existing models: Class I contains models
that lack a continuous-time latent X, while Class II contains models that incorporate
continuous-time latent X, but do not include confounding, observable factors V . Class I
models can be further classified based on those that model event times alone, compared
to models that jointly account for event times and their marks. Representative examples
of the first sub-class are mentioned in Section 2.2.2. The general framework in [24] is
representative of the second sub-class.

As an alternative, Class II contains the model of [56] and its multi-asset version [53]
and [54]. A Heston stochastic volatility model with normal noise at random times modified
from [2] is also an example. Class II also subsumes additional models in the literature. For
example, it generalizes models that provide for the estimation of Markov processes sampled
at random time intervals, with or without confounding microstructure noise ([3], [22]. In
addition, filtering models that estimate market volatility from UHF data are special cases of
our model. Recent papers in this area include [33], [34], [17], and [18]. As a third example,
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models in many classical filtering problems with MPP observations are contained within
our general framework; a partial list of reference papers includes [55], [21], [9], Chapter
19.3 of [48] (the first edition in 1978), Chapter 6.3 of [12], [42], and [23].

Finally, the potential for the latent continuous-time process X to depend on confound-
ing observable factors V is a central element for the models in Class III, a feature which
is also built into the model proposed in this paper. One simple example is provided in
Section 4, where V is modeled using two variables incorporated into the volatility of a
geometric Brownian motion intrinsic value process X. The components in V can change
at random (trades) or deterministic (scheduled macroeconomic news releases) times, and
can be modeled for a desired set of conditions in the market microstructure including the
trade sign (direction), volume, or other trading indicators encountered in high-frequency
financial markets trading. Moreover, the flexibility of the model allows for the marks {Yj}
to represent trade price, bid-ask quotes, or some combination of price and quote data.
Taken together, these features create the opportunity for new insights in empirical studies
of market microstructure theory.

3. Bayes Estimation via Filtering Equation. The partially-observed model offers a
typical framework for Bayes estimation. In this section, we derive the normalized filtering
equation and point out its two important features. Then, we present a convergence theorem,
describe the blueprint for constructing recursive algorithm, and prove a lemma for the
consistency of the Bayes estimators.

3.1. The Posterior and its Filtering Equation. We present the posterior distribution
process and derive the normalized filtering equation.

3.1.1. The Posterior Distribution Process of (θ(t),X(t)). First, we define the condi-
tional distribution.

Definition 3.1. Let πt be the conditional distribution of (θ(t),X(t)) given FΦ,V
t and

(θ(0),X(0)), and let

π(f, t) = EP [f(θ(t),X(t))|FΦ,V
t ] =

∫

f(θ, x)πt(dθ, dx).

If a prior distribution is assumed on (θ(0),X(0)) as in Bayesian paradigm, then πt
becomes the continuous-time posterior distribution, which is determined by π(f, t) for
all continuous and bounded f . When prior information is accessible, Bayesian approach
provides a scientific way to incorporate the prior information. If no prior information is
available, uniform noninformative priors can be employed.

The posterior summarizes Bayesian uncertainty quantification about (θ(t),X(t)) given
FΦ,V
t and is at the center of Bayesian point and interval estimation. A posterior allows us to

determine the different kind of estimators from Bayesian viewpoint such as posterior mean,
posterior median, or other summary quantities, which minimize the posterior expectation of
a corresponding loss function according to statistical decision theory. Moreover, a posterior
allows us to construct Bayesian forms of interval, or more general, set estimation such as
the credible set and the highest posterior density region.
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3.1.2. The Normalized Filtering Equation. The infinite dimensional posterior dis-
tribution process {πt}t≥0 is uniquely characterized by the following normalized filtering
equation, which is a SPDE.

Theorem 3.1. Suppose that (θ,X,Φ, V ) satisfies Assumptions 2.1 - 2.5. Then, πt is the
unique measure-valued solution of the SPDE under P , the normalized filtering equation,

π(f, t) = π(f, 0) +

∫ t

0
π(Avf, s)ds

+

∫ t

0

∫

Y

[π(ζ(y)f, s−)

π(ζ(y), s−)
− π(f, s−)

]

(

Φ(d(s, y))− π(ζ(y), s)µ(dy)ds
)

.

(3.1)

Moreover, when the stochastic intensity λ̄(t) is FΦ,V
t -predictable, the normalized filter-

ing equation is simplified as

(3.2) π(f, t) = π(f, 0) +

∫ t

0
π(Avf, s)ds+

∫ t

0

∫

Y

[π(r(y)f, s−)

π(r(y), s−)
− π(f, s−)

]

Φ(d(s, y)),

where r(y) = r(y; θ(s),X(s),Φs−, V s−, s−) is defined in (2.4).
Proof. Let ρ(f, t) = EQ[f(θ(t),X(t))L(t)|FΦ,V

t ]. By Theorem 3.1 in [39], ρ(f, t) follows
the unnormalized filtering equation below:

(3.3) ρ(f, t) = ρ(f, 0) +

∫ t

0
ρ(Avf, s)ds+

∫ t

0

∫

Y

ρ((ζ(y)− 1)f, s−)(Φ(d(s, y))− µ(dy)ds),

for t > 0 and f ∈ D(Av), the domain of generator Av, where ζ(y) = ζ(s−, y) defined in
(2.5).

Bayes Theorem1 ([12], page 171) provides the relationship between ρ(f, t) and π(f, t):

(3.4) π(f, t) =
ρ(f, t)

ρ(1, t)
.

Note that ρ(1, t) follows the simple stochastic differential equation (SDE) obtained
from (3.3) by taking f = 1. To determine the SDE for π(f, t), we apply Itô’s formula for
semimartingale (see [51], page 78) to f(X,Y ) = X

Y
with X = ρ(f, t) and Y = ρ(1, t). After

some simplification, we have

π(f, t) =π(f, 0) +

∫ t

0
π(Avf, s)ds−

∫ t

0

∫

Y

[π(ζ(y)f, s) + π(f, s)π(ζ(y), s)]µ(dy)ds

+

∫ t

0

∫

Y

(π(f, s)− π(f, s−))Φ(d(s, y)).

(3.5)

A last step remains to make π(f, s) in the integrand of the last integral predictable.
Assume a trade at price y occurs. Then,

π(f, s) =
ρ(f, s)

ρ(1, s)
=

ρ(f, s−) + ρ((ζ(y)− 1)f, s−)

ρ(1, s−) + ρ(ζ(y)− 1, s−)
=

ρ(ζ(y)f, s−)

ρ(ζ(y), s−)
=

π(ζ(y)f, s−)

π(ζ(y), s−)
.

1Bayes Theorem implies that the conditional probability measure π is obtained by normalizing the
conditional measure ρ by its total measure. For this reason, the equation governing the evolution of ρ(f, t)
is called the unnormalized filtering equation, and that of π(f, t) the normalized filtering equation.
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Hence, Equation (3.5) implies Equation (3.1).
Recall ζ(y) = ζ(t, y) = λ̄(t)r(y|X(t), t). When λ̄(t) is FΦ,V

t -measurable, λ̄(t) in ζ(y)
can be pulled out of the conditional expectation. Two additional observations further
simplify Equation (3.1) to Equation (3.2). First,

∫

Y
π(ζ(y)f, t)µ(dy) = λ̄(t)π(f, t), and

∫

Y
π(ζ(y), t)µ(dy) = λ̄(t). Then, the two terms in the integrand of ds in Equation (3.1)

cancel out. Second, π(ζ(y)f,s−)
π(ζ(y),s−) = π(fr(y),s−)

π(r(y),s−) .

For the uniqueness of the normalized filtering equation, see Appendix A.4 in [39].
Under P , it can be shown that π(ζ(y), t)µ(dy)dt is a FΦ,V

t -predictable compensator of
Φ. Hence, the normalized filter has a semimartingale representation.

Note that in the case of exogenous sampling, such as when the event times follow an
ACD model or a Cox model, {Ti}’s stochastic intensity λ̄(t) is FΦ,V

t -predictable. Then,
Equation (3.1) is simplified to (3.2). The advantage is the reduction of the computation
of the posterior distribution. Moreover, observe that the stochastic intensity disappears
in the simplified filter. Hence, the parameters for the model of {Ti} can be estimated
separately via other approaches such as maximum likelihood procedure for an ACD model.
The uncertainty of the rest parameters that are related to X or the noise can be quantified
by the Bayesian approach via filtering equation to be developed, and the Bayes estimates
are model-free of the assumptions on durations. The example to be given in Section 4 takes
such advantages. The tradeoff is the exclusion of the relationship between durations and
the state (θ,X).

3.1.3. Two Features of the Filtering Equation. First, the normalized filters can be
split up into the propagation and the updating equations. We illustrate such separation by
Equation(3.2). Let the arrival times be t1, t2, . . . , then, Equation (3.2) can be dissected
into the propagation equation, describing the evolution without event occurrence:

(3.6) π(f, ti+1−) = π(f, ti) +

∫ ti+1−

ti

π(Avf, s)ds,

and the updating equation, describing the update when an event occurs:

(3.7) π(f, ti+1) =
π(r(y)f, ti+1−)

π(r(y), ti+1−)
,

where the mark at time ti+1 is assumed to be y. Note that the propagation equation has
no random component, implying that πt evolves deterministically when there are no event
arrival. The updating equation is random because the observation mark y is random.

Second, the normal filters have recursiveness. Again, we illustrate this by (3.2), where
the goal is to find the expressions for πt, the posterior in Bayesian paradigm. The normal-
ized filter (3.2) possesses a desirable recursive form as Kalman filter. In nonmathematical
terms, Equation (3.2) supplies a device H such that for all t,

(3.8) πt+dt = H(πt,Φ(d(t, y))),

where Φ(d(t, y)) denotes the innovation during (t, t + dt). The device H can be regarded
as a computer program not depending on data. πt is all that has to be stored in memory,
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and Φ(d(t, y)) is anew datum fed into the program H. If no new datum arrives during
(t, t+dt), H is determined by the propagation equation (3.6). If a new datum arrives, H is
specified by the updating equation (3.7). Note that πt+dt only depends on πt, but not the
whole past {πs : 0 ≤ s ≤ t}. This enormous dimension reduction saves memory space. In
statistical jargons, we may say that (πt(X, θ), dΦt) is a sufficient statistic for the problem
of “estimating” πt+dt(X, θ) on the basis of FΦ,V

t+dt. In summary, the practical implication of
recursiveness is to make it possible the real time parameter uncertainty quantification for
streaming UHF data.

3.2. A Convergence Theorem. Theorem 3.1 provides the normalized filter to charac-
terize the posterior measure-valued process, which is infinite dimensional. For computation,
one needs to reduce the infinite dimensional problem to a finite dimensional problem and to
construct a recursive algorithm, whose basic requirement is consistency. Namely, the com-
puted approximate posterior distribution-valued process converges to the true one. The
weak convergence theorem below provides a blueprint for constructing consistent recursive
algorithms through Kushner’s Markov chain approximation methods ([44]).

Due to the page limit, we only give a brief description of weak convergence and state
the theorem. A formal detailed description and the proof is contained in [39].

Following the literature of weak convergence (see, for example, Chapter 3 of [27]), we
use the notation, Xǫ ⇒ X, to mean Xǫ converges weakly to X in the Skorohod topology
as ǫ → 0. Such weak convergence is uniform in time for the process X.

Let (θǫ,Xǫ) be an approximation of the signal, (θ,X). (θǫ,Xǫ) can be naturally taken
as a sequence of pathwise approximating Markov chain index by ǫ as seen in Section 4.3.
Let the observations for an approximate signal (θǫ,Xǫ) be Φǫ = {(Ti,ǫ, Yi,ǫ)}i≥1 and let the

approximation of π(f, t) be πǫ(f, t) = EPǫ [f(θǫ,Xǫ(t)) | F
Φǫ ,V
t ].

Theorem 3.2. Suppose that (θ,X,Φ, V ) on (Ω,F , P ) satisfies Assumptions 2.1 - 2.5.
Suppose that for any ǫ > 0, (θǫ,Xǫ,Φǫ, V ) on (Ωǫ,Fǫ, Pǫ) also satisfies Assumptions 2.1 -
2.5. If (θǫ,Xǫ) ⇒ (θ,X) as ǫ →0, then, for any bounded continuous functions, f ,
(1) Φǫ ⇒ Φ under the physical measures; and
(2) πǫ(f, ·) ⇒ π(f, ·), as ǫ → 0.

This theorem states that as long as the approximate signal weakly converges to the
true signal, we have the weak convergence of (1) the observation of an approximate model
to that of the true model, and (2) the posterior measure-valued process of the approximate
model to that of the true one.

3.3. A Blueprint for Constructing Recursive Algorithms. Theorem 3.2 provides a
three-step blueprint for constructing consistent recursive algorithms based on Markov chain
approximation method. Moreover, the algorithms are easily parallelizable according to the
grid space of time-invariant parameters. The algorithms compute the current joint posterior
distribution and the marginal posterior means, which are the usual Bayes estimates under
squared error loss. As in numerical solution to a PDE, we discretize the state and the
mark spaces into two grids, respectively. Then, there are three main steps in constructing
a recursive algorithm, namely, Hǫ(·, ·) as the approximation of H(·, ·) in (3.8). Step 1 is
to construct (θǫ,Xǫ), a Markov chain approximation to (θ,X), and let rǫ(y) = r(yǫ|θǫ, xǫ)
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be an approximation to r(y) = r(y|θ, x), where (θǫ, xǫ) and yǫ are restricted to the grids
of (θǫ,Xǫ) and Yǫ, respectively. Step 2 is to obtain the approximate filter for πǫ(f, t)
corresponding to (θǫ,Xǫ, Yǫ, rǫ) by applying Theorem 3.1. Recall that the approximate
filter can also be dissected into the propagation equation:

(3.9) πǫ(f, ti+1−) = πǫ(f, ti) +

∫ ti+1−

ti

πǫ(Aǫ,vf, s)ds,

and the updating equation (assuming that a mark at yi+1 occurs at time ti+1):

(3.10) πǫ(f, ti+1) =
πǫ(frǫ(yi+1), ti+1−)

πǫ(rǫ(yi+1), ti+1−)
.

If no new mark point arrives during (t, t+ dt), Hǫ is governed by the propagation equation
(3.9). If a new mark point arrives, Hǫ is specified by the updating equation (3.10). Step
3 converts Equations (3.9) and (3.10) to a recursive algorithm for the state grid and in
discrete time by two substeps: (a) we represent πǫ(·, t) as a finite array with the components
being πǫ(f, t) for lattice-point indicators f and (b) we approximate the time integral in (3.9)
with an Euler scheme or other higher order numerical schemes.

3.4. Consistency of the Bayes Estimators. The following lemma provides an easily-
verified sufficient condition for the consistency of the Bayes estimators for the time-invariant
parameters in the proposed model.

Lemma 3.1. Suppose that (θ,X,Φ, V ) satisfies Assumptions 2.1 - 2.5 with a vector of
parameter θ = (θ1, θ2) where θ1 and θ2 are the time-invariant and time-variant vector of
parameter with some priors. If there exists a LP - consistent estimator for θ1 based on
(X,Φ, V ) for some p ≥ 1, namely, there exists θ̂t = θ̂

(

(Xs,Φs, Vs) : 0 ≤ s ≤ t
)

, such that

E|θ̂1,t− θ1|
p → 0 as t → ∞, then, EP [f(θ1)|F

Φ,V
t ] → f(θ1) a.s. as t → ∞ for any bounded

continuous function f .

Proof. Martingale convergence theorem implies that EP [f(θ1)|F
Φ,V
t ] → EP [f(θ1)|F

Φ,V
∞ ]

a.s. If we can prove that θ1 is F
Φ,V
∞ -measurable, then EP [f(θ1)|F

Φ,V
∞ ] = f(θ1) and the con-

sistency is obtained.

In order to show that θ1 is FΦ,V
∞ -measurable, it is enough to show the existence of an

FΦ,V
∞ -measurable and a.s. consistent estimator of θ1. Since |x|p is a convex function for

p ≥ 1, we use Jensen’s inequality to obtain

E|θ̄1,t − θ1|
p = E

∣

∣E[θ̂1,t − θ1|F
Φ,V
t ]

∣

∣

p
≤ E

[

E|θ̂1,t − θ1|
p|FΦ,V

t

]

= E|θ̂1,t − θ1|
p,

which goes to zero by the assumption. Markov inequality implies that θ̄1,t → θ1 in proba-
bility. Then, we can select an almost surely convergent subsequence of {θ̄1,t} to θ1, which

is the needed FΦ,V
∞ -measurable and a.s. consistent estimator of θ1.

This lemma implies that we have the strong consistency of the Bayes estimator for
a time-invariant parameter as long as we can construct a Lp-consistent estimator based
on (X,Φ, V ). This condition is much easier to check and meet than to construct a L2-
consistent estimator based solely on Φ as in the proof of Theorem 5.1 of [56]. Many



G.X. HU, D.R. KUIPERS AND Y. ZENG 13

previous consistency results based on X such as those in [22] can be applied to find a
Lp-consistent estimator and then obtain the consistency. Furthermore, L2-consistency is
relaxed to Lp-consistency for some p ≥ 1, allowing the application to Levy jump processes
proposed asset price (see examples in Chapter 4 of [16]) where the second moment does
not exist.

4. Modeling and Estimation via Filtering: An Application to Bond Transactions
Data. This section provides an example for the method of building a specific filtering model
and that of constructing a recursive algorithm. We provide simulation and estimation
examples drawn from the microstructure of trading in U.S. Treasury notes - a market
with well-known UHF properties and, as we illustrate below, one where theories regarding
market behavior are particularly amenable to the flexible form of our model.

4.1. Data Description. The data consists of a complete record of quote revisions and
trades in the voice-brokered 10-year U.S. Treasury note market during the period August -
December 2000 as transacted through GovPX, Inc.2 During this time period, GovPX was
the leading interdealer broker for trades in the U.S. Treasury note market ([7]), acting as a
clearinghouse for market activity transacted through five of the six largest Treasury inter-
dealer brokers ([41]). The GovPX tick-by-tick data has been widely used in the empirical
finance literature in recent years in studies of market microstructure effects, including [29],
[40], [11], and [35], among others. The GovPX data is also the primary source used by the
Center for Research in Security Prices (CRSP) to construct the Daily U.S. Government
Bond Database.

The specific data we examine concerns quotes and trades for the “on-the-run” 10-
year U.S. Treasury note during the sample period. On-the-run (hereafter, “OTR”) notes
are those of a given initial maturity that have been most-recently auctioned by the U.S.
Treasury; trading activity on any given day is extremely active for OTR notes ([31]). During
the sample period, the 10-year note was auctioned on a quarterly cycle, with occasional
skipped auctions due to government surpluses at that time. As a result, the data contains
a tick-by-tick record for the OTR 10-year note issued on August 15, 2000, and follows this
note through the end of calendar year 2000, during which time it remained OTR in the
Treasury market. 3

Due to their superior liquidity, OTR notes are the preferred trading vehicle for par-
ticipants in the Treasury market with both liquidity-based and information-based motives
for trading. For this reason, studies that examine market efficiency and microstructure
behavior in the Treasury market almost exclusively focus on the same data we use here
for our filtering model examples. Given the richness of our model’s functional form, we
are able to conduct estimation and inferential tests regarding competing microstructure

2Research that relies on the GovPX data typically ends with calendar year 2000, as GovPX changed
its data reporting methods in early 2001 in a way that impedes a detailed study of market microstructure
effects. See [32] and [11] for details.

3The GovPX data itself consists of a raw data feed in a flat-file text format for the real-time, unfiltered
record updates observed for all Treasury securities throughout the trading day. Substantial data pre-
processing is necessary to re-construct the original quotes and trades from this raw data; see [32] in particular
for details.
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hypotheses in the Treasury market using the OTR note transactions data in this paper
and [39]. A distinct advantage of estimating our model using this specific data is that stale
trading noise is minimized, while the information content of trades is maximized.

4.2. A Filtering Model for UHF Transactions Data in the Treasury Market. We
illustrate how to build a filtering model to incorporate market behavior by following Rep-
resentation I because it is more intuitive.

4.2.1. The Intrinsic Value Process. First, the state process becomes the intrinsic value
process Xt, of which we consider a general form of the geometric Brownian motion(GBM)
process for illustration. We assume the intrinsic value process follows the SDE given by:

(4.1)
dXt

Xt
= µdt+ (σ0 + σenVen(t) + σbsVbs(t))dBt

where Bt is a standard Brownian Motion, and (µ, σ0, σen, σbs) are model parameters. The
observable factors V (t) = {Ven(t), Vbs(t)} comprise two processes examined in the finance
empirical literature on Treasury tick data.

Ven(t) indicates whether trades observed at time t are coincident with significant
macroeconomic news announcements. [40] and others find that volatility in the Trea-
sury market increases significantly upon release of macroeconomic news, and [11] provide
evidence that information-based trading is the predominant source of the observed change
in volatility. The other process Vbs(t) indicates whether a trade is buyer or seller initi-
ated. [10] and [30] argue that Treasury dealers, as the primary buyers of new OTR notes
from the U.S. government, must manage the resulting inventory in a manner that creates
volatility effects in the auction aftermarket. An advantage of the proposed framework we
use here is that we can easily incorporate different theories. Specifically, we examine the
four specifications of the process V (t) described above in terms of the implied parameter
constraints:

Model 1: Simple GBM, σbs = σen = 0
Model 2: GBM with an economic news dummy, σbs = 0.
Model 3: GBM with a buyer-seller initiation dummy, σen = 0.
Model 4: GBM with both dummies.

Let θ = (µ, σ0, σen, σbs, ρ), where ρ is used to model non-clustering noise to be defined
later. The generator of (4.1) is:

(4.2) Avf(x, θ) = µx
∂

∂x
f(θ, x) +

1

2
(σ0 + σenVen + σbsVbs)

2x2
∂2

∂x2
f(θ, x).

4.2.2. Trading Durations and Noise. We assume the trade duration follows an expo-
nential ACD or Wiebull ACD model, which is exogenous sampling. Hence, the simplified
version of the normalized filtering equation for the posterior can be employed.

We incorporate trade noise onto the intrinsic values at observed trading times to pro-
duce the model price process. Three sources of noise are identified and studied in the
finance literature (e.g., [37]): Price discreteness, trade clustering, and nonclustering noise.
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To model discreteness, the mark space for the tick price (the minimum price variation in a
trading market) becomes a discrete space Y = {a+1

M
, a+2

M
, · · · , a+m

M
}. For the OTR 10-year

Treasury note, M is 64 by market convention. In addition, market trades tend to occur on
coarse ticks such as 2

M
and 4

M
, resulting in price clustering of the data. Finally, we assume

that nonclustering noise captures all other unspecified noise in the market.
Given this framework, at trade time ti, let x = X(ti), y = Y (ti), and y′ = Y ′(ti) =

R[X(ti) + Ui,
1
M
], where Ui is defined as the non-clustering noise. We construct a random

transformation y = F (x) in three steps and calculate the corresponding transition proba-
bility p(y|x).

Step (i): Add non-clustering noise U ; x′ = x + U , where U is the non-clustering
noise at trade i. We assume {Ui} are independent of X(t), i.i.d., with a doubly geometric
distribution:

P{U = u} =

{

(1− ρ) if u = 0
1
2(1− ρ)ρM |u| if u = ± 1

M
,± 2

M
, · · ·

Step (ii): Incorporate discrete noise by rounding off x′ to its closest tick, y′ = R[x′, 1
M
].

Step (iii): Incorporate clustering noise by biasing y′ through a random biasing function
bi(·) at trade i. {bi(·)} is assumed conditionally independent given {y′i}. To be consistent
with the bond price data analyzed, we construct a simple random biasing function for the
tick of 1/64 percentage (i.e. M = 64). The data to be fitted has the clustering occurrence:
odd sixteenths are most likely; odd thirty-seconds are the second most likely; odd sixty-
fourths are least likely; and each tick of its kind has about the same frequencies.

To produce such clustering, a biasing function b(·) is constructed based on these biasing
rules: if the fractional part of y′ is even sixty-fourths, then y stays on y′ with probability
one; if the fractional part of y′ is odd sixty-fourths, then y stays on y′ with probability
1− α− β; y moves to the closest odd thirty-seconds with probability α, and moves to the
closest odd sixteenth with probability β.

To sum up, for consistency with market convention in the OTR 10-year note market,
we construct a random transformation F for ticks with M = 64:

Y (ti) = bi(R[X(ti) + Ui,
1

M
]) = F (X(ti)),

where F is specified by p(y|x) given in Appendix A. The parameters related to clustering
noise (α, β) can be estimated through the method of relative frequency.

As for Representation II, the price process Φ = {ti, Y (ti)} can be viewed as a random
counting measure Φ(t, B) for B ⊂ Y. with the predictable stochastic intensity kernel for
y ∈ Y:

(4.3) λ(t, y) = λ̄(t)p(y|X(t); θ, t)

where p(y|X(t); t) = p(y|x) is the transition probability given in Appendix A.
The focus of this example is to quantify the uncertainty of the parameter θ = (µ, σ0, σen,

σbs, ρ) for the four models, via the Bayesian approach using the recursive algorithm con-
structed in the following subsection.
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4.3. The Recursive Algorithm for Posterior. We exemplify the three-step blueprint
of Markov chain approximation method in Section 3.3 to construct a consistent and easily-
parallelized recursive algorithm using Model 4. The algorithms for Models 1-3 can be devel-
oped similarly. The goal is to compute πt, the joint posterior distribution of (θ,X(t)) given
FΦ,V
t = σ(((Ti, Yi), V (s)) : Ti ≤ t, s ≤ t), the observations up to time t with observable

market factors. Recall Definition 3.1. Just as we approximate a continuous distribution by
a histogram, we approximate πt by πǫ,t, a discretized approximation. The corresponding
πǫ(f, t) is defined by πǫ(f, t) =

∑

θ,x f(θ, x)πǫ,t(θ, x) where the sum is over the state grid.

In preparation for constructing the recursive algorithm, we discretize the six-dimension
state space of (θ,X(t)) where θ = (µ, σ0, σen, σbs, ρ) to form a state grid. Mark space Y is
already a discrete space for the models, and r(y) in (3.2) becomes p(y|X(t); θ) for y ∈ Y.
Suppose there are nµ + 1, nσ0

+ 1, nσen + 1, nσbs
+ 1, nρ + 1, and nx + 1 lattices in the

discretized spaces of µ, σ0, σen, σbs, ρ and X respectively. For example, the lattice space of
µ becomes

µ : [αµ, βµ] → {αµ, αµ + ǫµ, . . . , αa + (nµ − 1)ǫµ, βµ},

where βµ = αµ + nµǫµ, and the number of lattices is nµ + 1. Define µi = αµ + iǫµ, the
ith element in the discretized parameter space of µ, and define σ0,j, σen,k, σbs,l, ρm and Xw

similarly. Let

θ~v = (µi, σ0,j, σen,k, σbs,l, ρm)

where ~v is (i, j, k, l,m).

Let θǫ = (µǫ, σǫ,0, σǫ,en, σǫ,bs, ρǫ) to denote an approximate discretized parameter signal,
which is random in the Bayesian framework.

Step 1: Construct (θǫ,Xǫ), an approximate signal where ǫ = max(ǫµ, ǫσ0
, ǫσen , ǫσbs

, ǫρ, ǫx).
For a time-invariant parameter space such as θ, the discretized parameter space is a natural
approximation. However, Markov chain is a natural approximation for Markov processes.
We construct a birth and death generator Aǫ,v, such that Aǫ,v → Av in (4.2). Namely, we
construct a Markov chain (θǫ,Xǫ), where Xǫ is a birth and death process, to approximate
(θ,X(t)) through the approximation of the generator, which consists the first and second
order derivatives. We employ finite difference method. Specifically, we apply the central
difference approximation to the differentials to construct the approximate generator as
below:

Aǫ,vf(θ~v, xw)

=µixw
f(θ~v, xw + ǫx)− f(θ~v, xw − ǫx)

2ǫx

+
1

2
(σ0,j + σen,kVen + σbs,lVbs)

2x2w
f(θ~v, xw + ǫx) + f(θ~v, xw − ǫx)− 2f(θ~v, xw)

(ǫx)2

=βv(θ~v, xw)(f(θ~v, xw + ǫx)− f(θ~v, xw)) + δv(θ~v, xw)(f(θ~v, xw − ǫx)− f(θ~v, xw)),

(4.4)

where

βv(θ~v, xw) =
1

2

(

(σ0,j + σen,kVen + σbs,lVbs)
2x2w

ǫ2x
+

µixw
ǫx

)

,
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and

δv(θ~v, xw) =
1

2

(

(σ0,j + σen,kVen + σbs,lVbs)
2x2w

ǫ2x
−

µixw
ǫx

)

.

Note that βv(θ~v, xw) and δv(θ~v, xw) are the birth and death rates of Xǫ respectively, and
should be nonnegative. If necessary ǫx can be made smaller to ensure the nonnegativity.

Clearly, Aǫ,v → Av and we have (θǫ,Xǫ) ⇒ (θ,X) as ǫ → 0 by Corollary 4.8.5 on page
230 of [27].

Step 2: Obtain the normalized filtering equation of the approximate model. For the
approximate signal (θǫ,Xǫ(t)), the observations Φ = {(Ti, Yi)} become Φǫ = {(Ti,ǫ, Yi,ǫ)},
the observation corresponding to (θ~ǫ,Xǫx(t)) with the stochastic intensity kernel λǫ(t, y) =
λ̄ǫ(t)p(y|Xǫ(t); θǫ). Then, (θǫ,Xǫ,Φǫ, V ) consists of the approximate model on (Ωǫ,Fǫ, Pǫ),
and satisfies Assumptions 2.1 - 2.5.

Definition 4.1. Let πǫ,t be the conditional probability mass function of (θ~ǫ,Xǫx(t)) on the

discrete state space given FΦǫ,V
t . Let

πǫ(f, t) = EPǫ [f(θǫ,Xǫ(t)) | F
Φǫ ,V
t ] =

∑

θ~v,xw

f(θ~v, xw)πǫ,t(θ~v, xw),

where the summation goes over the whole state grid.
Then, the normalized filtering equation for the approximate model is given by Equations

(3.9) and (3.10).
Step 3: Convert (3.9) and (3.10) to a Recursive Algorithm, which computes an approx-

imate joint posterior.
Definition 4.2. The posterior mass of the approximate model at (θ~v, xw) for time t is

denoted by
pǫ(θ~v, xw; t) = πǫ,t{θǫ = θ~v,Xǫ(t) = xw}.

There are two substeps. The core of the first substep is to take f as the following lattice-
point indicator function:

(4.5) I{θ~v,xw}(θǫ,Xǫ(t)),

which takes value one when θǫ = θ~v and Xǫ(t) = xw, and value zero otherwise. Then, the
following fact emerges:

πǫ

(

βv(θǫ,Xǫ(t))I{θ~v ,xw}(θǫ,Xǫ(t) + ǫx)
)

= βv(θ~v, xw−1)pε(θ~v, xw−1; t).

Along with similar results, Equation (3.9) becomes

pǫ(θ~v, xw; ti+1−) = pǫ(θ~v, xw; ti) +

∫ ti+1−

ti

(

βv(θ~v, xw−1)pǫ(θ~v, xw−1; t)

−(βv(θ~v, xw) + δv(θ~v, xw))pǫ(θ~v, xw; t) + δv(θ~v, xw+1)pǫ(θ~v, xw+1; t)
)

dt

(4.6)

If a trade at yj, jth price level, occurs at time ti+1, the updating Equation (3.10) can
be written as,

(4.7) pǫ(θ~v, xw; ti+1) =
pǫ(θ~v, xw; ti+1−)p(yj|xw, ρm)

∑

~v′,w′ pǫ(θ~v′ , xw′ ; ti+1−)p(yj|xw′ , ρm′)
,
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where the summation goes over the whole state grid, and p(yj|xw, ρm), the transition
probability from xw to yj, is specified by Equation (A.2) in Appendix A.

In the second substep, we approximate the time integral in Equation (4.6) with an
Euler scheme to obtain a recursive algorithm further discrete in time. After excluding
the probability-zero event that two or more jumps occur at the same time, there are two
possible cases for the inter-trading time. Case 1, if ti+1 − ti ≤ LL, the length controller in
the Euler scheme, then we approximate pǫ(θ~v, xw; ti+1−) as

pǫ(θ~v, xw; ti+1−) ≈ pǫ(θ~v, xw; ti) +
[

βv(θ~v, xw−1)pǫ(θ~v, xw−1; ti)

−
(

βv(θ~v, xw) + δv(θ~v, xw)
)

pǫ(θ~v, xw; ti) + δv(θ~v, xw+1)pǫ(θ~v, xw+1; ti)
]

(ti+1 − ti).
(4.8)

Case 2, if ti+1 − ti > LL, then we can choose a finer partition {ti,0 = ti, ti,1, . . . , ti,n =
ti+1} of [ti, ti+1] such that maxj |ti,j+1 − ti,j| < LL and then approximate pǫ(θ~v, xl; ti+1−)
by applying repeatedly Equation (4.8) from ti,0 to ti,1, then ti,2,. . ., until ti,n = ti+1.

Equations (4.7) and (4.8) consist of the recursive algorithm we employ to calculate the
approximate posterior at time ti+1 for (θ,X(ti+1)) based on the posterior at time ti. At
time ti+1, the Bayes estimates of θ and X(ti+1) are the corresponding marginal means.

To complete the algorithm for posterior, we need to choose a reasonable prior. Assume
independence between X(0) and θ. The prior for X(0) can be set by P{X(0) = Y (t1)} = 1
where Y (t1) is the first observed price because they are very close. For other parameters,
we can simply take a uniform prior to the discretized state space of θ. At t = 0, we select
the prior as below:

pǫ(θ~v, xw; 0) =

{

1
(1+nµ)(1+nσ0 )(1+nσen )(1+nσbs

)(1+nρ)
if xw = Y (t1)

0 otherwise
.

We need to further find out an appropriate range and step size for a prior of each
parameter. UHF data set is often large and the marginal posterior of a parameter commonly
converges to a small interval around the true value because of the consistency of Bayes
estimators. After spotting the small interval, we can set the uniform prior there. Then, we
identify a suitable step size, which typically outputs a unique modal bell-shaped posterior
distribution.

4.3.1. Consistency of the Recursive Algorithm. There are two approximations in
the construction of the above recursive algorithm. One is the approximation of the time
integral in (4.6) by a Euler scheme, whose convergence is well-established. The other is
the approximation of the filtering equation in (3.6) and (3.7) of the true model by that in
(3.9) and (3.10) for the approximated model. The weak convergence result (2) of Theorem
3.2 guarantees the consistency of the second approximation.

To be specific, let

p(θ~v, xw; t) = πt{θ ∈ Nθ~v ,X(t) ∈ Nxw},

where Nθ~v and Nxw are appropriate neighborhoods. For example, Nxw = (xw − 1
2ǫx, xw −

1
2ǫx). Then, Theorem 3.2 implies that pǫ(θ~v, xw; ·) ⇒ p(θ~v, xw; ·) for all (θ~v, xw) in the
state grid as ǫ → 0.
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4.4. A Simulation Demonstration. The recursive algorithm for calculating the joint
posterior and the Bayes estimates are fast enough to be real time. We develop a Fortran
computer program for the recursive algorithms, and in this section, we demonstrate that
the program works well using simulated data.

Using Model 4, we generate a simulated data series with economic news and buyer-seller
initiation dummies. We choose parameter values of µ = 4.0E−8, σ0 = 3E−8, σen = 2E−5,
and σbs = 1E−5 (per seconds). Based on an approximate trading year of 252 business days
and 9.5 hours of trading per business day ([31]), these parameters correspond to annualized
values of µ = 35%, σ0 = 8.8% , σen = 5.9%, and σbs = 2.9%. Because the trade intensity
λ̄(t) is not critical in the recursive algorithms due to the exogenous sampling, we use a
constant value of 0.0058 seconds/trade, which is consistent with observed trade frequencies
in the Treasury market. For similar reasons, we use ρ = 0.06, α = 0.057, and β = 0.083 to
model the trade noise.

Given these choices, we generate a simulated time series of 2000 transactions in the
OTR 10-year Treasury note market. We use a random buyer-seller initiation dummy for
all the simulated observations. This choice results from the null hypothesis regarding
inventory effects in the intraday Treasury note market [30]: in the absence of inventory
management, the arrival time for buyer- and seller-initiated trades should be completely
random. In addition, between the 1000th and 1001st transaction, a news announcement
impulse occurs. Given the results in [35] and elsewhere, we model the 50 subsequent trades
with the news dummy equal to one, after which time we assume all relevant information
is reflected in the market price.

Table 4.1
Final Bayes estimates for the simulated dataset.

Parameter True Value Bayes Estimate St.Error

µ 4.00E-08 4.37E-08 1.10E-08
σ0 3.00E-05 3.03E-08 7.71E-07
ρ 0.06 0.07 0.01
σen 2.00E-05 2.27E-05 4.77E-06
σbs 1.00E-05 8.69E-06 1.25E-06

With uninformative uniform priors, at each trading time ti, the algorithm calculates
the joint posterior of (µ, σ0, ρ, σen, σbs), the marginal posteriors, the Bayes estimates, and
the standard errors (SE). Table 4.4 provides the final results for the simulated dataset.
The Bayes estimates (final posterior means) are close to their true values, each within
two standard error (SE, standard deviation of the final posterior) bounds. This is in line
with the consistency of the Bayes estimators for the models, which can be proved using
the same method described in Appendix B of [56]. While the estimation error for µ is
much larger than the other parameters, µ corresponds to the overall price trend, which will
not be estimated with precision using shorter time series. Since the volatility function is
the primary area of interest in financial market microstructure, µ is essentially a nuisance
parameter for our purposes.



20 BAYESIAN INFERENCE VIA FILTERING EQUATIONS (I)

Given the simulation result, there is reason to believe the recursive algorithm can
provide model identification when applied to actual market data, and provide insight into
whether information-based trading, inventory management effects, or both are significant
factors in the observed microstructure within the OTR 10-year Treasury note market. We
explore such tests via estimation in the next subsection.

4.5. Empirical Results. We apply the estimation recursive algorithm to the tick trans-
action data for the OTR 10-Year Treasury note during the period 8/15/2000 to 12/31/2000,
where Figure 4.1 is the time series plot with the color-distinctive shaded areas marking dif-
ferent news period (Ven = 1). Table 4.2 reports summary statistics for the complete set of
10006 trades in our data. Based on the relative frequencies for observed tick values and
recorded trades, the estimated clustering parameters are α = .057 and β = 0.083.
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Figure 4.1. Times Series of Prices for 10-Year Note.

Table 4.2
Summary Statistics for the OTR 10-Year Note, 8/15/2000 - 12/31/2000

# trades Min Max Median Mean Std Skewness Kurtosis
10-Year Note 10006 98.6875 105.6563 100.0625 100.3787 1.3777 1.9014 6.3022

For Vbs, we use a simple dummy variable equal to one for buyer-initiated trades and 0
for seller-initiated trades; this indicator can be constructed directly from an examination of
the raw GovPX data feed. For Ven, we follow [35] and capture the four regularly-scheduled
macroeconomic news releases found to be most significant in the U.S. Treasury market:
CPI, PPI, the Labor Department’s unemployment report, and the Federal Reserve’s rate
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Table 4.3
Final Annualized Bayes Estimates for the OTR 10-Year Note, 8/15/2000 - 12/31/2000

Model µ σ0 ρ σen σbs
Model 1 14.48% 5.01% 3.49%

(7.77%) (0.046%) (0.30%)
Model 2 13.95% 4.93% 3.42% 5.37%

(8.22%) (0.073%) (0.40%) (0.62%)
Model 3 50.33% 5.30% 3.33% -0.60%

(6.76%) (0.06%) (0.48%) (0.07%)
Model 4 50.07% 5.28% 3.21% 4.99% -0.80%

(7.39%) (0.022%) (0.60%) (0.38%) (0.13%)

meetings. One of these four items occurs on 18 of the 94 days in our sample period. The first
three announcements are scheduled for release at 8:30AM Eastern time; for consistency with
prior research in this area, we set Ven = 1 for the thirty minute period that follows. While
Fed announcements are usually disclosed near 2:00PM Eastern time, the actual release time
tends to vary somewhat. Following other research, we classify trades during the one-hour
period 1:30PM to 2:30PM Eastern time as announcement period trades (Ven = 1) on Fed
announcement days. In combination, there are 191 transactions in the data that occur
with Ven = 1.

For the Models 1 - 4, we use the recursive algorithm to generate the Bayes estimates
and parameter values for application to the OTR 10-year Treasury note data; Table 4.5
provides the final Bayes estimation results. The volatility parameter σ0 is in the range of
4.9%− 5.5%, consistent with historical 10-year Treasury note volatility. The dummies Ven

and Vbs are both statistically significant. σen is positive and significant, consistent with
the evidence that volatility in the Treasury market increases when new public information
arrives ([29]). The magnitude of σen is also economically significant. In Models 2 and 4,
market volatility is estimated as 95% to 110% higher during the time periods immediately
following significant news releases, similar to the results found using an entirely different
approach in [11].

For parameter σbs, the estimates are negative and significant for both Models 3 and
4. Given that the dummy Vbs is set to one for buyer-initiated trades, our finding confirms
the supposition in [30] that Treasury dealers induce market volatility on the sell-side of the
market due to their role as market intermediaries on behalf of the government. To clear
out the inventory of their recently-acquired OTR notes and distribute them to the public,
dealers are net sellers and significant inventory effects are the natural result. However,
while significant, this effect is estimated to be a smaller component of the information
contained in the market’s observed order flow compared to macroeconomic news releases;
the point estimate for σbs is just 15% of σ0.

Overall, our empirical results strongly suggest that both information-based and inventory-
based effects can explain the observed volatility microstructure in the OTR 10-year Trea-
sury note market. Perhaps of more immediate importance, our example here shows that
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the filtering model and computational algorithm described in this paper can provide a new
approach for statistical analysis of UHF financial market data.

5. Conclusions. In this paper, we develop a general nonlinear filtering framework for
UHF data that uses MPP observations with confounding observable factors. Under our
framework, complete information of UHF price data is used for statistical inference. Using
stochastic filtering, we derive the normalized filtering equation to characterize the posterior
measure-valued process, quantifying the parameter uncertainty. With a weak convergence
theorem, we develop a general method to numerically solve the SPDE and conduct Bayes
estimation. The general theory is used to study the microstructure of trading in 10 year U.S.
Treasury notes, where we find that both information-based and inventory management-
based motives are significant factors in the observed trade-by-trade price volatility.

Together with the model uncertainty studied in [39], this paper opens up an exciting
new research area with many research topics. For Markov processes more complicated
than GBM such as important benchmark models of Stochastic Volatility (SV) models and
exponential Lévy models, which has tremendous financial applications in asset pricing and
risk management, the current recursive algorithm based on explicit method become bot-
tlenecked. However, the easily-parallelized recursive algorithms based on implicit methods
develop in [13] and the newly-available low-cost and green GPU supercomputing power
make it possible to provide real-time track and feed of SV. This can provide timely valu-
able market information for critical decision-making, especially, in the time most needed
such as during financial turmoils. This is under investigation and one work in such direction
is [14].

Besides parameter and model uncertainty, one interesting topic is to quantify algo-
rithmic uncertainty of the recursive algorithms. Other than consistency of the Bayes es-
timators, we can study the related asymptotic normality and efficiency. Besides Markov
chain approximation methods, other numerical methods such as particle Markov chain
Monte Carlo ([5]), EM algorithms, Poisson chaos expansion methods, and their combina-
tion could be useful. Related mathematical finance problems such as (American) option
pricing, portfolio selection, consumption-investment problems, optimal selling rules, quick-
est detection of regime switching and others are interesting but challenging, because this
market not only is incomplete but also possesses incomplete information. Some of the
above issues are currently under investigation.
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Appendix A. More on Clustering Noise of Section 4. To formulate the biasing rule,
we first define a classifying function r(·),

(A.1) r(y) =







2 if the fractional part of y is odd 1/64
1 if the fractional part of y is odd 1/32
0 if the fractional part of y is odd 1/16 or coarser

.

The biasing rules specify the transition probabilities from y′ to y, p(y|y′). Then, p(y|x),
the transition probability can be computed through p(y|x) =

∑

y′ p(y|y
′)p(y′|x) where

p(y′|x) = P{U = y′ − R[x, 1
64 ]}. Suppose D = 64|y − R[x, 1

64 ]|. Then, p(y|x) can be
calculated as, for example, when r(y) = 2,

(A.2) p(y|x) =







(1− ρ)(1 + αρ) if r(y) = 2 and D = 0
1
2 (1− ρ)[ρ+ α(2 + ρ2)] if r(y) = 2 and D = 1
1
2 (1− ρ)ρD−1[ρ+ α(1 + ρ2)] if r(y) = 2 and D ≥ 2

.
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