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Bayesian Inference via Filtering Equations
for Ultra-High Frequency Data (II): Model Selection

Grace Xing Hu∗, David R. Kuipers †, and Yong Zeng ‡

Abstract. For the general partially-observed framework of Markov processes with marked point process
observations proposed in [6], we develop the corresponding Bayesian model selection via filter-
ing equations to quantify model uncertainty. To achieve this, we first derive the unnormalized
filtering equation and the system of ratio filtering equations to, respectively, characterize the
evolution of the marginal likelihood and the corresponding Bayes factors. Then, we prove a
powerful weak convergence theorem. The theorem enables us to employ Markov chain approx-
imation method to construct consistent, easily-parallelizable, recursive algorithms to calculate
the related Bayes factors and posterior model probabilities of the candidate models in real time
for streaming ultra-high frequency data. The general model selection theory is again illustrated
by the four specific models built for U.S. Treasury Notes transactions data from GovPX via
simulation and empirical studies.

Key words. Bayes factor, marked point process, market microstructure noise, Markov chain approximation
method, model selection, nonlinear filtering, partially observed model, posterior model probabil-
ity, ultra-high frequency data

AMS subject classifications. Primary: 60H35, 62F15, 62M02, 62P05, 93E11;
Secondary: 60F05, 60G55, 65C40, 65C60.

1. Introduction. In our previous work [6], we propose a general nonlinear filtering
framework with marked point process observations incorporating other observable economic
variables for ultra-high frequency (UHF) data. The model well fits the stylized facts of
UHF data in both macro- and micro-movements, unifies important existing models and
provides extensions in new directions. We develop Bayesian inference via filtering equations
to quantify uncertainty in the previous and the current papers. In the previous one, we
develop the related Bayes estimation via filtering equation for the parameter uncertainty
quantification. In the current paper, we extend [21, 9] to further develop the related
Bayesian model selection via filtering equations for the model uncertainty quantification.

The previously proposed partially-observed model has two equivalent representations.
Grounded on the representation of filtering with marked point process observations, we
define the corresponding fundamental characteristics for model uncertainty quantification.
Namely, we define the joint likelihood, the (integrated) marginal likelihood, the likelihood
ratios, the Bayes factors for two models. Moreover, we define the posterior model proba-
bilities for a collection of the proposed models.

The integrated likelihood and the Bayes factors may be characterized by conditional
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2 BAYESIAN INFERENCE VIA FILTERING EQUATIONS (II)

measures that change over time, namely, by measure-valued processes. To characterize
them, we use stochastic nonlinear filtering technique and derive the necessary filtering
equations, which are stochastic partial differential equations (SPDEs). The system of ratio
filtering equations stipulates the evolution of a pair of ratio conditional measures. Their to-
tals are a pair of Bayes factors, which are at the center of quantifying the model uncertainty
for Bayesian viewpoint.

Berger and Pericchi in [1] offers compelling reasons to use the Bayesian approach for
model selection. Most of the reasons are suitable for the proposed models and cited below.
First, Bayes factors and posterior model probabilities are easy to understand, and the
approach is conceptually the same, regardless of the number of models under consideration.
Second, Bayesian model selection is consistent. Namely, if one of the candidate models is
actually the true model, then Bayesian model selection will ensure the selection of the true
model with enough observations. Moreover, even if the true model is not a candidate,
Bayesian model selection will select the one among the candidates which is closest to the
true model in terms of Kullback - Leibler divergence. Fourth, the Bayesian procedures
are automatic Ockham’s razors, preferring simpler models over more sophisticated models
when the data provide roughly equivalent fits. Fifth, the Bayesian approach does not
require nested models. Finally, the Bayesian approach can account for model uncertainty
via Bayesian averaging. All these desirable properties support our adoption of Bayesian
approach for model uncertainty quantification.

Similar to the case of parameter uncertainty quantification, the evolving system of
measure-valued processes is of infinite dimension and there is tremendous computational
challenge in application. Fortunately, the system of ratio filters also has recursiveness,
which remarkably benefits computation if the recursiveness is appropriately exploited.
Then, we prove a weak convergence theorem, which shows that the weak convergence
of the approximate signal guarantees the consistency of all of the useful approximate con-
ditional measures. Based on the theorem, we employ the Markov chain approximation
method to construct consistent, easily-parallelizable, efficient and recursive algorithms.
The algorithms can quantify model uncertainty in real time for inflowing UHF data.

Finally, we exemplify the general Bayesian model selection theory again by the four
specific models constructed for U.S. Treasury Notes transaction data from GovPX. We
illustrate how to develop a recursive algorithm for efficiently propagating and updating
the pair ratio conditional measures, whose total are a pair of Bayes factors. Simulation
studies validate that the algorithm rightly selects the true model. Then, we employ the
algorithm for model uncertainty quantification of the four models. The model selection
empirical results further confirm that both information-based and inventory management
based motives have significant impact on trade-to-trade price volatility.

The paper is organized as follows. The next section briefly review the previously
proposed model. Section 3 develops Bayesian model selection via filtering equations. We
define the related statistical fundamental characteristics, derive the filtering equations and
prove a weak convergence theorem. Section 4 supplies simulation and model selection
examples drawn from the microstructure of trading in U.S. Treasury notes. We provide
concluding remarks in Section 5, with the mathematical proofs collected into Appendices.
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2. Brief Review of the Model. For self-containing purpose, we concisely recap the
model in two equivalent representations and interested readers can refer to [6] for the
generality of the model and more detailed explanations of the assumptions.

2.1. Representation I: Random Arrival Time State-Space Model. This representa-
tion similarly has the state process, observation times, observations and noise.

State Process:

We make a a mild Markov assumption for the extended state process (θ,X), where θ is
allowed to potentially change in continuous time. Let V be a vector process, representing
other observable economic or market factors.

Assumption 2.1. (θ,X) is a p + m-dimension vector Markov process that is the so-
lution of a martingale problem for a generator Av such that Mf (t) = f(θ(t),X(t)) −
∫ t

0 Avf(θ(s),X(s))ds is a Fθ,X,V
t -martingale, where Fθ,X,V

t is the σ-algebra generated by
(θ(s),X(s), V (s))0≤s≤t, and f is in the domain of Av.

Observation times

We assume that the observations, T1, T2, . . . , Ti, . . ., follow a general point process with a
nonnegative Ft-predictable stochastic intensity in the following form: λ̄(t) = λ̄(θ(t),X(t),
V t−,Φt−, t) where V t = V (· ∧ t) denotes the sample path of V up to time t and similarly
Φt− = {(Ti, Yi) : Ti < t}.

Observations and Noise

For the mark space Y, recall that (Y,Y, µ) is a measure space with a finite measure µ
(µ(Y) < ∞) and (Y, dY) is a complete, separable metric space.

The noisy observation at event time Ti, Y (Ti), takes a value in mark space Y and is
modeled by Y (Ti) = F (X(Ti)). Note that F (·) in y = F (x) is a random transformation
from x to y, specified by a transition probability p(y|x) with mild conditions given in
Assumption 2.2.

This general representation has two significant differences from the usual state-space
models: random arrival times and continuous-time state process.

2.2. Representation II: Filtering with MPP Observations. In Representation II, we
have the extended Markov signal, (θ,X), which is partially observed through a MPP,
Φ = {Ti, Yi}i≥1. We incorporate an auxiliary predictable process V in both the signal and
the MPP, and formulate (θ,X,Φ, V ) an extended filtering problem with MPP observations.
Below we recall the four more assumptions for the model.

Assumption 2.2. Under P , the stochastic intensity kernel of Φ = {(Tn, Yn)}n≥1 is given
by λ(t, dy) = λ̄(t)p(dy|X(t), t), namely,

λ(t, dy; θ(t),X(t), V t−, Y t−, t−)

=λ̄(θ(t),X(t), V t−, Y t−, t−)p(dy|X(t); θ(t), V t−, Y t−, t−).
(2.1)

Assumption 2.3. There exists a reference measure Q such that (1) P is absolutely contin-
uous with respect to Q, namely, P << Q; and (2) under Q, (θ,X) and V are independent
of Φ = {(Tn, Yn)}n≥1 and the compensator of MPP Φ is γQ(d(t, y)) = µ(dy)dt.

We use EQ[X] or EP [X] to indicate that the expectation is taken with respect to a
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specific probability measure. Let

(2.2) r(y) = r(y; θ(t),X(t), V t−,Φt−, t−) =
p(dy|X(t); θ(t), V t−,Φt−, t−)

µ(dy)
.

and

ζ(t, y) =
γP (d(t, y))

γQ(d(t, y))
=

λ(t, dy)

µ(dy)

=λ̄(θ(t),X(t), V t−,Φt−, t−)r(y; θ(t),X(t), V t−,Φt−, t−).

(2.3)

Let L(t) = dP
dQ

(t) be the Radon-Nikodym derivative given in (3.1). Clearly, ζ(t, y) deter-
mines L(t).

Assumption 2.4. The ζ(t, y) defined in (2.3) satisfies the condition that EQ[L(T )] = 1
for all T > 0.

Assumption 2.5.
∫ t

0 E
P[λ̄(s)]ds < ∞, for t > 0.

3. Bayesian Model Selection via Filtering Equations. The filtering formulation fur-
nishes a natural setup for Bayesian inference. In this section, we present the unnormalized
filtering equation, a system of ratio filtering equations, and a weak convergence theorem
with the proofs given in Appendices.

We first define the related statistical foundations for Bayesian model selection.

3.1. The Likelihoods, the Bayes Factors and the Posterior Model Probabilities.
For conducting hypotheses testing and model selection, we study the joint likelihood, the
marginal (or integrated) likelihood processes of the proposed model, as well as the processes
of the likelihood ratios, the Bayes factors, and the posterior model probabilities.

3.1.1. The Joint Likelihood Process. Let DU [0,∞) be the space of right continuous
with left limit functions with state space U . Then, the probability measure P given V on
Ω = DRp×Rm×Y[0,∞) for (θ,X,Φ) can be written as P = Pθ,x,Φ|v = Pθ,x|v ×PΦ|θ,x,v, where
Pθ,x|v is the probability measure on DRp+m [0,∞) for (θ,X) given V such that Mf (t) in

Assumption 2.1 is a Fθ,X,V
t -martingale, and PΦ|θ,x,v is the conditional probability measure

on DY[0,∞) for Φ given (θ,X, V ).
Under P , Φ relies on (θ,X, V ). With Assumption 2.3, there exists a reference measureQ

such that under Q, (θ,X) and Φ become independent, (θ,X) remains the same probability
law and Φ becomes a Poisson random measure with compensator µ(dy)dt. Therefore, Q
can be decomposed as Q = Pθ,x|v×QΦ, where QΦ is the probability measure for the Poisson
random measure on DY[0,∞) with compensator µ(dy)dt.

One can obtain the Radon-Nikodym derivative guaranteed by Assumption 2.4, (see
Proposition 14.4.I of [3], or Theorem 10.1.3. of [16]) and denoted by L(t) as given below:

L(t) =
dP

dQ

∣

∣

∣

Ft

=
dPθ,x|v

dPθ,x|v

∣

∣

∣

Ft

×
dPΦ|θ,x,v

dQΦ

∣

∣

∣

Ft

=
dPΦ|θ,x,v

dQΦ

∣

∣

∣

Ft

=L(0) exp

{

∫ t

0

∫

Y

log ζ(s−, y)Φ(d(s, y))−

∫ t

0

∫

Y

[

ζ(s−, y)− 1
]

µ(dy)ds

}

,

(3.1)
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where ζ(t, y) is given by (2.3) and L(0) is a F0-measurable random variable with EQ(L(0)) =
1. L(t) is a local martingale and can be written in a SDE form:

(3.2) L(t) = L(0) +

∫ t

0

∫

Y

(ζ(s, y)− 1)L(s−)(Φ(d(s, y)) − µ(dy)ds).

Because of Assumption 2.4, L(t) is actually a martingale. The SDE form plays an important
role in deriving the unnormalized filtering equation.

From a frequentist’s view point, one takes L(0) = 1 and L(t) is the joint likelihood of
the model. In this paper, we take a Bayesian stand and regard L(0) as a random variable
with a prior distribution on (θ(0),X(0)) satisfying EQ(L(0)) = 1.

3.1.2. The Unnormalized Conditional Measure-valued and Marginal Likelihood Pro-
cesses. In the case that X is not observable and for the purpose of statistical analysis,
we need the marginal likelihood of Φ, which can be concisely expressed by conditional
expectation. For the purpose of characterizing the evolution of the marginal likelihoods,
we define the two terms below.

Definition 3.1. Let ρt be the unnormalized conditional measure of (θ(t),X(t)) given FΦ,V
t

defined as

ρt {(θ(t),X(t)) ∈ A} = EQ
[

I{(θ(t),X(t))∈A}(θ(t),X(t))L(t)|FΦ,V
t

]

,

where A is a Borel set in R
p+m.

Following the nonlinear filtering literature ([2]), ρt is called the unnormalized conditional
measure-value process.

Definition 3.2. Let

ρ(f, t) = EQ[f(θ(t),X(t))L(t)|FΦ,V
t ] =

∫

f(θ, x)ρt(d(θ, x)).

If (θ(0),X(0)) is fixed, then the marginal likelihood of Φ with V is obtained by taking
f = 1: EQ[L(t) | FΦ,V

t ] = ρ(1, t). A frequentist uses the marginal likelihood for statistical
inference.

If a prior distribution is assumed on (θ(0),X(0)) as in Bayesian paradigm, then the
integrated marginal likelihood of Φ over the prior is also ρ(1, t). If we have prior informa-
tion, then Bayesian method offers a scientific way to integrate the prior information. If we
have no prior information, then we can simply use uniform noninformative priors.

In order to compare K models with the same observation Φ = {Ti, Yi}i≥1 and the same
observable factor V , we prepare the notations here. Denote Model k by (θ(k),X(k),Φ(k), V (k))

for k = 1, 2, ...,K with P (k) = P
(k)
θ,x|v ×P

(k)
Φ|θ,x,v. Denote Q(k) = P

(k)
θ,x|v ×QΦ where QΦ is the

same for all K models. Under Q, the compensator Φ is µ(dy)dt. Denote L(k)(t) as the joint
likelihood of (θ(k),X(k),Φ(k), V (k)) with respect to Q(k). Since the available information,
FΦ,V
t , is the same for all models, we denote

(3.3) ρk(fk, t) = EQ[fk(θ
(k)(t),X(k)(t))L(k)(t)|FΦ,V

t ].

Then, the (integrated) marginal likelihood of Φ given V is ρk(1, t), for Model k.
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3.1.3. The Ratio Conditional Measure-valued and Bayes Factor Processes. For the
general partially-observed model reviewed in Section 2, we define the corresponding Bayes
factors, which are at the heart of Bayesian hypothesis testing and model selection between
two given models.

Definition 3.3.For k = 1, 2, ...,K and j 6= k in the same range, the Bayes factor of
Model k over Model j, Bkj, is defined as the ratio of integrated likelihoods of Model k over
Model j:

(3.4) Bkj(t) = ρk(1, t)/ρj(1, t).

The Bayes factor is usually interpreted as the “odd provided by the data for Model
k versus Model j”. With the priors being the “weighting functions”, Bkj is sometimes
called the “weighted likelihood ratio of Model k to Model j”. The Bayes factor can also be
written as the model posterior to model prior odds ratio, which desirably brings prior and
posterior information into one ratio and supplies the evidence of one model specification
over another. In summary, the Bayes factor allows us to measure the relative fit of one
model versus another one given the observed, or in our case, partially-observed data.

Suppose that Bkj has been calculated. Then, we can interpret it using a table furnished
by [7] as guideline. For example, if Bkj > 20 or 150, then there is strong or decisive evidence
against Model j, and in favor of Model k.

Similar to defining ρt and ρ(f, t), in order to characterize the evolution of and to

compute the Bayes factors, we define a conditional measure q
(kj)
t and a conditional integral

characteristic qkj(fk, t) below.
First, we provide the intuition behind. Recall from [6] that πt is the conditional dis-

tribution of (θ(t),X(t)) given FΦ,V
t and π(f, t) = EP [f(θ(t),X(t))|FΦ,V

t ]. Also recall the
Bayes theorem: π(f, t) = ρ(f, t)/ρ(1, t), implying that the conditional probability measure
πt is obtained from normalizing the conditional measure ρt by its (integrated) marginal
likelihood in the case of Bayes estimation. Now, for the case of Bayesian model selection

between two models, instead, we divide the conditional measure ρ
(k)
t of Model k by the

integrated likelihood of Model j so as to obtain another useful ratio conditional measure
(but not a probability measure) and a related integral.

Definition 3.4. For k = 1, 2, ...,K and j 6= k in the same range, let q
(kj)
t be the ratio

conditional measure of (θ(k)(t),X(k)(t)) in Model k given FΦ,V
t with respect to Model j,

defined by: for a Borel set A in R
p(k)+m(k)

,

q
(kj)
t

{

(θ(k)(t),X(k)(t)) ∈ A
}

=
ρ
(k)
t

{

(θ(k)(t),X(k)(t)) ∈ A
}

ρj(1, t)

=
EQ

[

I{(θ(k)(t),X(k)(t))∈A}(θ
(k)(t),X(k)(t))L(k)(t)|FΦ,V

t

]

ρj(1, t)

=EQ
[

I{(θ(k)(t),X(k)(t))∈A}(θ
(k)(t),X(k)(t))L̃(k)(t)|FΦ,V

t

]

where L̃(k)(t) = L(k)(t)/ρj(1, t).
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In the last equality, we can move ρj(1, t) inside the conditional expectation because

ρj(1, t) is F
Φ,V
t measurable. Similarly, q

(kj)
t is a measure-valued process.

Definition 3.5. Let

(3.5) qkj(fk, t) =

∫

fk(θ
(k), x(k))q

(kj)
t (d(θ(k), x(k))).

Similar to the integral form of π(f, t), the integral forms of ρ(f, t) and qkj(fk, t) are
important in deriving the recursive algorithms where f (or fk) is taken to be a lattice-
point indicator function.

By the definition of q
(kj)
t , we observe that

qkj(fk, t) =

∫

fk(θ
(k), x(k))

ρ
(k)
t (d(θ(k), x(k)))

ρj(1, t)
=

ρk(fk, t)

ρj(1, t)
.

Similarly, qjk(fj, t) =
ρj(fj ,t)
ρk(1,t)

. The pair, (qkj(fk, t), qjk(fj , t)), are called as the filter ratio
processes for fk of Model k and fj of Model j.

Clearly, the connection of qkj(fk, t) to the Bayes factor is shown by taking fk = 1 and
Bkj(t) = qkj(1, t).

3.1.4. The Posterior Model Probability Processes. For the model selection with more
than two models, the posterior model probabilities is a powerful tool to quantify model un-
certainty. When prior model probabilities P (Mk|F

Φ,V
0 ), k = 1, 2, ...,K, are available, then

we can calculate, by Bayes formula, the posterior probabilities of the models, P (Mk|F
Φ,V
t ),

which can also be expressed by Bayes factors as shown below:

P (Mk|F
Φ,V
t ) =

P (Mk|F
Φ,V
0 )ρk(1, t)

∑K
l=1 P (Ml|F

Φ,V
0 )ρl(1, t)

=
[

K
∑

l=1

P (Ml|F
Φ,V
0 )

P (Mk|F
Φ,V
0 )

qlk(1, t)
]−1

.

In the uninformative case, a typical option of the prior model probabilities is P (Mk|F
Φ,V
0 ) =

1/K for k = 1, 2, ...,K, namely, every model has equal initial probability. Then, the
posterior model probabilities become:

P (Mk|F
Φ,V
t ) =

ρk(1, t)
∑K

l=1 ρl(1, t)
=

[

K
∑

l=1

qlk(1, t)
]−1

.

Given the observations, the posterior model probabilities provide how likely each candidate
model is and the needed weights to account for model uncertainty in Bayesian averaging.
If one model has to be selected, one reasonable and commonly-used criterion is to select
the model with the highest posterior model probability.

3.2. Filtering Equations. Stochastic partial differential equations (SPDEs) provide an
powerful machinery to stipulate the evolution of the continuous-time conditional measure-
valued processes, determining the likelihoods, the Bayes factors and the posterior model
probabilities. The following two theorems summarize the useful SPDEs.
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Before presenting the theorems, let us recall that we can alternatively present an MPP
as a random counting measure, Φ(t, B), recording the cumulative number of marks in a
set B ∈ Y up to time t for all B ∈ Y and t > 0. Observe Φ(t, B) =

∫ t

0

∫

B
Φ(dt, dy) where

Φ(dt, dy) is given by

(3.6) Φ(dt, dy) =
∑

i≥1

δ{Ti,Yi}(t, y)dtdy

with Φ({0} × Y) = 0 and δ{Ti,Yi}(t, y) is the Dirac delta-function on R
+ × Y.

Theorem 3.1. Suppose that (θ,X,Φ, V ) satisfies Assumptions 2.1 - 2.5. Then, ρt is the
unique measure-valued solution of the SPDE under Q, the unnormalized filtering equation,

(3.7) ρ(f, t) = ρ(f, 0) +

∫ t

0
ρ(Avf, s)ds+

∫ t

0

∫

Y

ρ((ζ(y)− 1)f, s−)(Φ(d(s, y))− µ(dy)ds),

for t > 0 and f ∈ D(Av), the domain of generator Av, where ζ(y) = ζ(s−, y) defined in
(2.3).

The unnormalized filtering equation characterizes the evolution of the unnormalized
conditional measure, whose total measure is the (integrated) marginal likelihood. Under
Q, the compensator of Φ is µ(dy)dt and the double integral is a martingale. This implies
that the unnormalized filter has a semimartingale representation.

Theorem 3.2. Suppose Model k (k = 1, 2, ...,K) has generator A
(k)
v for (θ(k),X(k)),

the trading intensity λ̄k(t) = λ̄k(θ
(k)(t),X(k)(t),Φt−, V t−), and the transition probabil-

ity p(k)(dy|x) from x = X(t) to dy for the random transformation F (k). Suppose that
(θ(k),X(k),Φ(k), V (k)) satisfies Assumptions 2.1 - 2.5 with a common reference measure
QΦ, under which the compensator of Φ is µ(dy)dt. Then, for k = 1, 2, ...,K and j 6= k in

the same range,
(

q
(kj)
t , q

(jk)
t

)

are the unique pair measure-valued solution of the following
system of SPDEs, the ratio filtering equations,

qkj(fk, t) = qkj(fk, 0) +

∫ t

0
qkj(A

(k)
v fk, s)ds

+

∫ t

0

∫

Y

[qkj(fkζk(y), s−)

qjk(ζj(y), s−)
qjk(1, s−)− qkj(fk, s−)

]

(

Φ(d(s, y)) −
qjk(ζj(y), s)

qjk(1, s)
µ(dy)ds

)

,

(3.8)

qjk(fj, t) = qjk(fj, 0) +

∫ t

0
qjk(A

(j)
v fj, s)ds

+

∫ t

0

∫

Y

[qjk(fjζj(y), s−)

qkj(ζk(y), s−)
qkj(1, s−) − qjk(fj, s−)

]

(

Φ(d(s, y)) −
qkj(ζk(y), s)

qkj(1, s)
µ(dy)ds

)

,

(3.9)

for all t > 0, fk ∈ D(A
(k)
v ) and fj ∈ D(A

(j)
v ).

When λ̄k(θ
(k)(t),X(k)(t),Φt−, V t−, t) = λ̄j(θ

(j)(t), X(j)(t),Φt−, V t−, t) = λ̄(Φt−, V t−, t)
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and letting rk(y) = p(k)(dy|x)/µ(dy), we can simplify the above two equations as

qkj(fk, t) = qkj(fk, 0) +

∫ t

0
qkj(A

(k)
v fk, s)ds

+

∫ t

0

∫

Y

[qkj(fkrk(y), s−)

qjk(rj(y), s−)
qjk(1, s−)− qkj(fk, s−)

]

Φ(d(s, y)),

(3.10)

qjk(fj, t) = qjk(fj, 0) +

∫ t

0
qjk(A

(j)
v fj, s)ds

+

∫ t

0

∫

Y

[qjk(fjrj(y), s−)

qkj(rk(y), s−)
qkj(1, s−)− qjk(fj , s−)

]

Φ(d(s, y)).

(3.11)

The system of evolution equations for qkj(fk, t) and qjk(fj, t), characterizes the two con-
ditional measures, whose totals are the likelihood ratios or the Bayes factors with priors.

Note that
qjk(ζj(y),s)
qjk(1,s)

µ(dy)ds = π(ζj(y), s)µ(dy)ds, which is the compensator of Φ under P

for Model j. This implies that the ratio filtering equations of the models also have semi-
martingale representations under suitable measures. Moreover, the filtering equations have
the recursiveness, which make it possible for the real time model uncertainty quantification
for inflowing UHF data.

Similar to the normalized filtering equation in the case of exogenous sampling, we
observe that if event times {Ti}’s stochastic intensities λ̄(t) or (λ̄k(t), λ̄j(t)) are FΦ,V

t -
predictable including ACD models or Cox models, then Equations (3.8) and (3.9) are
simplified to (3.10) and (3.11). The advantage is the great reduction of computation in
calculating the Bayes factors and the posterior model probabilities. Moreover, observe that
the stochastic intensities disappear in the simplified ratio filters. This implies the Bayesian
model selection via filtering equations is model-free of the assumptions on durations as
long as its stochastic intensities are FΦ,V

t -predictable. This advantage is exploited in the
example given in Section 4. The disadvantage is the exclusion of the relationship between
durations and (X(t), v(t)) where v(t) is the time-vary part of θ such as stochastic volatility
and regime shifting.

To prepare for the construction of recursive algorithms, we point out that the ratio
filtering equations, such as (3.10), can be separated into the propagation equation for the
evolution without trade,

(3.12) qkj(fk, ti+1−) = qkj(fk, ti) +

∫ ti+1−

ti

qkj(A
(k)
v fk, s)ds,

and the updating equation,

(3.13) qkj(fk, ti+1) =
qkj(fkrk(yi+1), ti+1−)

qjk(rj(yi+1), ti+1−)
qjk(1, ti+1−),

when a trade happens at time ti+1 with price yi+1.
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3.3. A Weak Convergence Theorem. Theorems 3.1 and 3.2 deliver the filtering equa-
tions of the model-selection-related continuous-time conditional measure-valued processes,
which are defined on DRp+m×Y[0,∞) and thus are all infinite dimensional. To compute
them, the infinite dimensional problem has to be reduced to a finite dimensional problem
so as to construct algorithms. One fundamental requirement for the recursive algorithms
is consistency: the approximate conditional measure-valued processes computed by the
algorithms converge to the true ones. The theorem below furnishes the foundation for the
consistency.

3.3.1. The Setup. Since (Y, dY) is a complete separable metric space, so is DRp+m×Y

[0,∞) embedded with the Skorohod topology (see Theorem 3.5.6 of [4]), where we consider
the family of Borel probability measures, topologized with the Prohorov metric. Under
such a setup is the weak convergence theorem that we are going to establish. Chapter 3 of
[4] provides a formal description of all these concepts and the weak convergence employed
here.

Following the literature, we use the notation, Xǫ ⇒ X, to mean Xǫ converges weakly
to X in the Skorohod topology as ǫ → 0. Such weak convergence is uniform in time in the
sense that Xǫ ⇒ X implies (Xǫ(t1),Xǫ(t2), ...,Xǫ(tk)) ⇒ (X(t1),X(t2), ...,X(tk)) for every
finite set {t1, t2, ..., tk} ⊂ D(X), where D(X) ≡ {t ≥ 0 : P{X(t) = X(t−)} = 1} is the
continuity set of X (Theorem 3.7.8 of [4]).

For Model k (θ(k),X(k),Φ(k), V (k)) where k = 1, 2, ...,K, let (θ
(k)
ǫ ,X

(k)
ǫ ) be an approx-

imation of the signal, (θ(k),X(k)). Since (θ(k),X(k)) is a vector of stochastic process with

sample paths in DRp+m [0,∞), (θ
(k)
ǫ ,X

(k)
ǫ ) can be naturally taken as a sequence of pathwise

approximating Markov chain index by ǫ.

We define the observations for an approximate signal for Model k as Φ
(k)
ǫ = {(T

(k)
i,ǫ , Y

(k)
i,ǫ )}.

Then, an approximate model for Model k is (θ
(k)
ǫ ,X

(k)
ǫ ,Φ

(k)
ǫ , V

(k)
ǫ ) with P

(k)
ǫ = P

(k),ǫ
θ,x|v ×

P
(k),ǫ
Φ|θ,x,v. The corresponding reference measure is Q

(k)
ǫ = P

(k),ǫ
θ,x|v × QΦ where QΦ is com-

mon for all k and all ǫ. Then, the compensator of Φ
(k)
ǫ = {(T

(k)
i,ǫ , Y

(k)
i,ǫ )} is µ(dy)dt under

QΦ, and is λ
(k)
ǫ (t, dy)dt = ζ

(k)
ǫ (t, y)µ(dy) = λ̄

(k)
ǫ (t) p

(k)
ǫ (dy|X

(k)
ǫ (t), t)dt under P

(k)
ǫ . Note

that the filtration FΦ,V
t is the same available information for all models of k and ǫ. Let

L
(k)
ǫ (t) = dP

(k)
ǫ

dQ
(k)
ǫ

(t) = L
(

(

θ
(k)
ǫ (s),X

(k)
ǫ (s),Φ

(k)
ǫ (s,B), V

(k)
ǫ (s)

)

: 0 ≤ s ≤ t, B ∈ Y
)

as in

Equation (3.1). Suppose that for ǫ > 0, (θ
(k)
ǫ ,X

(k)
ǫ ,Φ

(k)
ǫ , V

(k)
ǫ ) lives on (Ω

(k)
ǫ ,F

(k)
ǫ , P

(k)
ǫ )

with Assumptions 2.1 - 2.5.

3.3.2. The Convergence Theorem. We first define the approximations of ρk(fk, t),
πk(fk, t), and qkj(fk, t). Recall for Model k,

πk(fk, t) ≡ EP (k)
[

fk
(

θ(k)(t),X(k)(t)
)

|FΦ,V
t

]

.

Definition 3.6. For k = 1, 2, ...,K, j 6= k in the same range and an approximate model of

Model k, let ρ
(k)
ǫ,t be the unnormalized conditional measure of (θ

(k)
ǫ (t),X

(k)
ǫ (t)) given FΦ,V

t ,
and let

ρǫ,k(fk, t) = EQ
(k)
ǫ

[

fk
(

θ(k)ǫ (t),X(k)
ǫ (t)

)

L(k)
ǫ (t)|FΦ,V

t

]

.
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Let π
(k)
ǫ,t be the conditional distribution of (θ

(k)
ǫ (t),X

(k)
ǫ (t)) given FΦ,V

t , and let

πǫ,k(fk, t) = EP
(k)
ǫ

[

fk
(

θ(k)ǫ (t),X(k)
ǫ (t)

)

|FΦ,V
t

]

.

Let q
(kj)
ǫ,t be the ratio conditional measure of (θ

(k)
ǫ (t),X

(k)
ǫ (t)) given FΦ,V

t with respect
to Model j, and let qǫ,kj(fk, t) = ρǫ,k(fk, t)/ρǫ,j(1, t).

Let Pǫ(Mk|F
Φ,V
t ) be the posterior model probability of an approximate Model k given

as below:

Pǫ(Mk|F
Φ,V
t ) =

P (Mk|F
Φ,V
0 )ρǫ,k(1, t)

∑K
l=1 P (Ml|F

Φ,V
0 )ρǫ,l(1, t)

=
[

K
∑

l=1

P (Ml|F
Φ,V
0 )

P (Mk|F
Φ,V
0 )

qǫ,lk(1, t)
]−1

.

Now, we state the main convergence theorem.
Theorem 3.3. Suppose that for k = 1, 2, ...,K, (θ(k),X(k),Φ(k), V (k)) satisfies Assump-

tions 2.1 - 2.5 with the reference measure Q(k) = P
(k)
θ,x|v×QΦ, and the compensator of Φ(k)

is µ(dy)dt under QΦ. Suppose that Assumptions 2.1 - 2.5 hold for the approximate models

(θ
(k)
ǫ ,X

(k)
ǫ ,Φ

(k)
ǫ , V

(k)
ǫ ) with the reference measure Q

(k)
ǫ = P

(k),ǫ
θ,x|v ×QΦ, and the compensator

of Φ
(k)
ǫ is also µ(dy)dt under QΦ for all k and all ǫ.

If (θ
(k)
ǫ ,X

(k)
ǫ ) ⇒ (θ(k),X(k)) as ǫ → 0, then, as ǫ → 0, for all bounded continuous

functions, fk and fj, k = 1, 2, ...,K and j 6= k in the same range,

(1) Φ
(k)
ǫ ⇒ Φ(k) under physical measures;

(2) ρǫ,k(fk, t) ⇒ ρk(fk, t);
(3) πǫ,k(fk, t) ⇒ πk(fk, t);
(4) qǫ,kj(fk, t) ⇒ qkj(fk, t) simultaneously for each pair (k, j) with k 6= j;

(5) Pǫ(Mk|F
Φ,V
t ) ⇒ P (Mk|F

Φ,V
t ) simultaneously for k = 1, 2, · · · ,K.

This theorem states that as long as the approximate signal weakly converges to the true
signal, we have the weak convergence of (1) the observation of an approximate model to that
of the true model under physical measures, (2) the marginal likelihood of the approximate
model to the true marginal likelihood, (3) the posterior of the approximate model to the
true posterior, (4) the Bayes factors (or likelihood ratios) of the approximate models to
the true Bayes factors (or likelihood ratios), and (5) the posterior model probabilities of
the approximate models to the true posterior model probabilities.

Built on this theorem, we can adopt the blueprint described in Section 3.3 of [6] for con-
structing consistent and easily-parallelized recursive algorithms through Kushner’s Markov
chain approximation methods ([15]) to compute the approximate Bayes factors and poste-
rior model probabilities for model uncertainty quantification.

4. Model Selection via Filtering: An Application to Bond Transactions Data. This
section continues to employ the examples given in [6]. We illustrate the method of con-
structing a recursive algorithm to compute the Bayes factors and the posterior model
probabilities. We supply simulation and model selection examples drawn from the mi-
crostructure of trading in U.S. Treasury notes, and exemplify how to empirically test
market microstructure hypotheses.
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First, we concisely review the data and the four partially-observed models for bond
transactions data used in [6].

4.1. A Brief Review of the Data and the Four Models. The data we study involves
quotes and trades for the “on-the-run” (hereafter, “OTR”) 10-year U.S. Treasury note.
Specifically, the data includes a tick-by-tick record for the OTR 10-year note issued on
August 15, 2000 through the end of 2000, during which time the note stayed OTR in the
Treasury market.

We only present the model by Representation I. Recall that the state process turns
into the intrinsic value process Xt. We assume Xt is a geometric Brownian motion (GBM)
with the SDE given by:

(4.1)
dXt

Xt
= µdt+ (σ0 + σenVen(t) + σbsVbs(t))dBt

where Bt is a standard Brownian Motion, and (µ, σ0, σen, σbs) are model parameters. The
observable factors V (t) = {Ven(t), Vbs(t)} consist of two indicator processes. Ven(t) in-
dicates whether trades observed at time t are coincident with significant macroeconomic
news announcements and Vbs(t) indicates whether a trade is buyer or seller initiated. A
benefit of the employed framework is that we can readily discriminate between different
competing theories presented in [6] using simple inferential tests. Especially, we investigate
the four formats of the process V (t) presented above with different parameter constraints:
Model 1: Simple GBM, σbs = σen = 0
Model 2: GBM with an economic news dummy, σbs = 0.
Model 3: GBM with a buyer-seller initiation dummy, σen = 0.
Model 4: GBM with both dummies.

Similarly, we consider an exogenous sampling case where the trade duration follows
an Exponential ACD or Weibull ACD model. Hence, the simplified version of the ratio
filtering equation system for the Bayes factors can be employed.

We combine trade noise onto the intrinsic values at observed trading times to generate
the model price process. At trade time ti, let x = X(ti), y = Y (ti), and y′ = Y ′(ti) =
R[X(ti)+Ui,

1
M
], where Ui is defined as the non-clustering noise and has a doubly geometric

distribution with parameter ρ. For consistency with market convention in the OTR 10-year
note market, we construct a simple random biasing function bi(·) for ticks with M = 64.
Hence, we develop a random transformation y = F (x) by adding non-clustering noise Ui,
rounding to 1/M and biasing to clustering ticks as below:

Y (ti) = bi(R[X(ti) + Ui,
1

M
]) = F (X(ti)).

The corresponding transition probability p(y|x) can be calculated accordingly. Details
concerning bi(·) and the explicit p(y|x) for F can be found in [6].

There are three groups of parameters in the models. One group is the clustering noise
parameters, which can be estimated through the method of relative frequency. Another
group is the trading duration parameters, which can be estimated independently by another
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approach such maximum likelihood. In this paper, we focus on model selection, involving
the third group of parameters θ = (µ, σ0, σen, σbs, ρ), which are estimated from the Bayes
filter using the recursive algorithm in [6]. Since we consider only the exogenous sampling
case for trading duration, the recursive algorithm for Bayes factors constructed below works
regardless of the model assumption on trading durations.

4.2. The Recursive Algorithms for Bayes Factors. We illustrate how to follow the
three-step blueprint of Markov chain approximation method in Section 3.3 of [6] to con-
struct a consistent and easily-parallelized recursive algorithm for real time computing of
Bayes factors. For our four model candidates, we need to calculate six pairs of Bayes
Factors: {B21, B12},{B31, B13},{B41, B14},{B32, B23},{B42, B24} and {B43, B34}. In this
section, we show how to construct the recursive algorithm for pair {B41, B14}. The algo-
rithm can be easily modified to apply on other pairs. Let k = 1 or 4 in the construction
below. Observe that Y is a discrete space for the models, and rk(y) in (3.10) and (3.11)
turns into p(k) ≡ p(k)(y|X(t); θ) for y ∈ Y. We focus on the things related to Model 4 or
Models 4 to 1. The things related to Model 1 or Models 1 to 4 can be obtained similarly.

Step 1: Construct approximating Markov chains. As in Bayes estimation, we use

(θ
(k)
ǫ (t),X

(k)
ǫ (t)) as approximations to (θ(k)(t),X(k)(t)). Here, the parameters in Model

4 are denoted by θ(4)(t) = (µ(4), σ
(4)
0 , σ

(4)
en , σ

(4)
bs , ρ(4)). The generator of (4.1) using the

above parameter notations is given by:

A(4)
v f4(x

(4), θ(4)) = µ(4)x(4)
∂

∂x(4)
f4(θ

(4), x(4))

+
1

2

(

σ
(4)
0 + σ(4)

en Ven + σ
(4)
bs Vbs

)2
(x(4))2

∂2

∂(x(4))2
f4(θ

(4), x(4)).
(4.2)

For Model 4, we follow Section 4.3 of [6] and discretize the six-dimension state space to
form a state grid. Let

θ
(4)
~v = (µ

(4)
i , σ

(4)
0,j , σ

(4)
en,k, σ

(4)
bs,l, ρ

(4)
m )

where ~v is (i, j, k, l,m). Let θǫ = (µ
(4)
ǫ , σ

(4)
ǫ,0 , σ

(4)
ǫ,en, σ

(4)
ǫ,bs, ρ

(4)
ǫ ) to denote an approximate dis-

cretized parameter signal, which is random in the Bayesian framework. Then, we construct

the Markov chain approximate generator A
(4)
ǫ,v , which is given by

A(4)
ǫ,vf4(θ

(4)
~v , x(4)w )

=β(4)
v

(

θ
(4)
~v

, x(4)w )(f4(θ
(4)
~v

, x(4)w + ǫ(4)x )− f4(θ
(4)
~v

, x(4)w ))

+ δ(4)v (θ
(4)
~v , x(4)w )(f4(θ

(4)
~v , x(4)w − ǫ(4)x )− f4(θ

(4)
~v , x(4)w )

)

,

(4.3)

where

β(4)
v (θ

(4)
~v , x(4)w ) =

1

2





(

σ
(4)
0,j + σ

(4)
en,kVen + σ

(4)
bs,lVbs

)2
(x

(4)
w )2

(ǫ
(4)
x )2

+
µ
(4)
i x

(4)
w

ǫ
(4)
x



 ,
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and

δ(4)v (θ
(4)
~v , x(4)w ) =

1

2





(

σ
(4)
0,j + σ

(4)
en,kVen + σ

(4)
bs,lVbs

)2
(x

(4)
w )2

(ǫ
(4)
x )2

−
µ
(4)
i x

(4)
w

ǫ
(4)
x



 .

Step 2: Obtain the ratio filtering equations of Bayes factors for the approximate models.

When (θ(k),X(k)) is replaced by (θ
(k)
ǫ ,X

(k)
ǫ ), A

(k)
v by A

(k)
ǫ,v , Φ(k) by Φ

(k)
ǫ , and p(k) by p

(k)
ǫ ,

there also exists a probability measure P
(k)
ε in the place of P (k). Then Assumptions 2.1 -

2.5 also hold for (θ
(k)
ǫ ,X

(k)
ǫ ,Φ

(k)
ǫ , V ).

Recall from Definition (3.6) that q
(41)
ǫ,t is the ratio conditional measure of approximate

Models 4 to 1, and that the approximate filter ratio process can be expressed as

qǫ,41(f4, t) =
∑

~v′,w′

f4(θ
(4)
~v′

, x
(4)
w′ )q

(41)
ǫ,t (θ

(4)
~v′

, x
(4)
w′ ),

where the sum goes over the whole state grid. Similarly, q
(14)
ǫ,t and qǫ,14(f1, t) can be properly

defined. Hence, Theorem 3.2 with k = 4 and j = 1 gives the following approximate ratio
filtering equation, which can be separated as in (3.12) and (3.13):

(4.4) qǫ,41(f4, ti+1−) = qǫ,41(f4, ti) +

∫ ti+1−

ti

qǫ,41(A
(4)
v f4, s)ds,

when there is no trade and when a trade happens at time ti+1 with price yi+1,

(4.5) qǫ,41(f4, ti+1) =
qǫ,41(f4r4(yi+1), ti+1−)

qǫ,14(r1(yi+1), ti+1−)
qǫ,14(1, ti+1−).

Step 3 Convert Equations (4.4) and (4.5) and the related ones of qǫ,14(f1, t) to the
recursive algorithm, which computes a pair of approximate ratio conditional measures,

(q
(41)
ǫ,t , q

(14)
ǫ,t ), whose total is the pair Bayes factors. Namely, for example, Bǫ,41(t) =

qǫ,41(1, t) =
∑

~v′,w′ qǫ,41(θ
(4)
~v′

, x
(4)
w′ ; t), where the sum goes over all the state grid of Model 4,

and qǫ,41(θ
(4)
~v

, x
(4)
w ; t) is to be defined below.

Definition 4.1. The ratio conditional measure mass of approximate Models 4 to 1 at
(θ~v, xw) and at time t is denoted by

qǫ,41(θ
(4)
~v

, x(4)w ; t) = q
(41)
ǫ,t

{

θ(4)ǫ = θ
(4)
~v

,X(4)
ǫ (t) = x(4)w

}

.

The collection of qǫ,41(θ
(4)
~v

, x
(4)
w ; t) for the whole state grid is an discretized approxima-

tion of the ratio conditional measure q
(41)
t , and evolves continuously in time according to

Equations (4.4) and (4.5).
There are two more substeps in making the recursive algorithm. The first one is to

take f4 as the lattice-point indicator given below:

(4.6) I
{θ

(4)
~v

,x
(4)
w }

(θ(4)ǫ ,X(4)
ǫ (t)),
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which takes value one when θ
(4)
ǫ = θ

(4)
~v and X

(4)
ǫ (t) = x

(4)
w , and value zero otherwise. Then,

qǫ,41

(

δ(4)v (θ(4)ǫ ,X(4)
ǫ (t))I

{θ
(4)
~v

,x
(4)
w }

(θ(4)ǫ ,X(4)
ǫ (t)− ǫ(4)x ), t

)

= qǫ,41(θ
(4)
~v

, x
(4)
w+1; t).

The second substep is to approximate the time integral in Equation (4.4) by an Euler
scheme, which is similar to the approximation in Section 4.3 of [6]. The final propagation
part of the recursive algorithm has two cases. Case 1, if ti+1−ti ≤ LL, the length controller
for Euler scheme, then

qǫ,41(θ
(4)
~v

, x(4)w ; ti+1−)

≈qǫ,41(θ
(4)
~v

, x(4)w ; ti) +
[

β(4)
v (θ

(4)
~v

, x
(4)
w−1)qǫ,41(θ

(4)
~v

, x
(4)
w−1; ti)

−
(

β
(4)
4 (θ

(4)
~v

, x(4)w ) + δ
(4)
4 (θ

(4)
~v

, x(4)w )
)

qǫ,41(θ
(4)
~v

, x(4)w ; ti)

+ δ
(4)
4 (θ

(4)
~v

, x
(4)
w+1)qǫ,41(θ

(4)
~v

, x
(4)
w+1; ti)

]

(ti+1 − ti).

(4.7)

Case 2, if ti+1−ti > LL, then we can choose a thinner partition {ti,0 = ti, ti,1, . . . , ti,n =
ti+1} of [ti, ti+1] with maxj |ti,j+1 − ti,j| < LL and then apply repeatedly the recursive
algorithms given by the above equations from ti,0 to ti,1, then ti,2,. . ., until ti,n = ti+1.

Suppose a trade at price yi+1 occurs at time ti+1. Then, the updating Equation in
(4.5) becomes,

qǫ,41(θ
(4)
~v , x(4)w ; ti+1)

=
qǫ,41(θ

(4)
~v

, x
(4)
w ; ti+1−)p

(4)
ǫ (yi+1|x

(4)
w , ρm)

∑

~v′,w′ qǫ,14(θ
(1)
~v′

, x
(1)
w′ ; ti+1−)p(yi+1|x

(1)
w′ , ρm′)

×
(

∑

~v′,w′

qǫ,14(θ
(1)
~v′

, x
(1)
w′ ; ti+1−)

)(4.8)

where the sums go over all the lattices in the discretized state space.

Equations (4.7), (4.8) and the two corresponding equations for qǫ,14(·, ·; t) compose the
recursive algorithm we employ to calculate the approximate conditional measures at time
ti+1 from those at time ti to time ti+1−, and then to time ti+1. At time ti+1, the Bayes

factor Bǫ,41(ti+1) =
∑

~v′,w′ q
(4)
ε (θ

(4)
~v′

, x
(4)
w′ ; ti+1), where the sum goes over all the lattices in

the discretized state space.

As for the choice of the prior, we can follow [6] to assign uniform priors on parameters
(if prior information) and count on the final marginal posterior obtained to identify an
appropriate range and step size for the prior of each parameter. These priors are used
to compute the Bayes factors. The consistency of the recursive algorithm comes from the
consistency of the Euler scheme in approximating the time integral as well as result (4) of
Theorem 3.3.

Similarly, we can calculate the other approximate Bayes factors Bǫ,kj for k, j = 1, 2, 3, 4
and k 6= j. With all the Bayes factors available, the approximate posterior model proba-
bilities can be computed. For example, Pǫ(M4|F

Φ,V
t ) = 1

1+Bǫ,14(t)+Bǫ,24(t)+Bǫ,34(t)
.
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4.3. Simulation Tests. We code a Fortran program for the recursive algorithms, which
are able to output real-time Bayes factors. In this section, we examine the program for
model selection using the simulated data described in Section 4.4 of [6]. The simulated data
set is generated based on Model 4 and contains 2,000 observations. Between the 1000th

and 1001st transaction, a news announcement impulse occurs and the 50 subsequent trades
with the news dummy equal to one. After that, things are back to normal, namely, news
dummy equal to zero.

To assess model selection in recovering the true data generating process, Table 4.1
reports the value for the Bayes factors (B41, B42, B43, B31, B32, B21) and posterior model
probabilities at several time points (for all other pairs, use BijBji = 1). A uniform prior
is used initially for each of the Models 1 - 4. At N = 200, the Bayes factors B41, B42, B31

and B32 exceed the 150 benchmark, favoring models that include the buyer-seller initiation
dummy (Model 3 and Model 4). Models 3 and 4 perform equally well (B43 = 1), so they
are assigned the same posterior model probability. The same logic applies to Models 1 and
2 (B12 = 1); however, the news announcement impulse has not yet been introduced.

Surrounding the simulated news release, at N = 1000 the Bayes factors (B41, B42, B31,
B32) have increased to 115468, but the model posterior probabilities have not changed.
Once the news occurs, the estimated Bayes factors and posterior model probabilities im-
mediately capture the resulting volatility impact. Specifically, at N = 1001 the Bayes
factor B21 jumps from 1 to 2.2, B43 increases from 1 to 2.4, and Model 4 now exhibits
a higher posterior model probability(0.71) than does Model 3 (0.29). All of these show
that the Bayes factors and the posterior model probabilities are very sensitive in detecting
model change.

Once the announcement period ends (N = 1050), B21 has increased to 7.43E7 and
B43 has increased to 180017. At this point, the recursive algorithm strongly prefers Model
4 to the alternatives, assigning 0.99999 for the posterior model probability. For the final
950 simulated trades, the Bayes factors continue to evolve and even sometimes change
in large magnitude, but the posterior model probabilities remain stable. The recursive
algorithm correctly identifies the true data generating process as Model 4. This confirms
the consistency of Bayesian model selection approach ([1]). Figure 4.1 plots trade-by-trade
posterior model probabilities of Models 1 to 4 with the shaded area indicating news period
(Ven = 1) and further validates that the posterior model probabilities provides a sensitive
but stable and powerful tool for selecting the right model.

With these simulation results, we have grounds to accept that the recursive algorithm
can deliver model selection when employed to real market data. We explore such tests in
the next subsection.

4.4. Empirical Tests. We use the Bayes factors recursive algorithm to examine the
tick transaction data for the OTR 10-Year Treasury note during the period 8/15/2000 to
12/31/2000. Related data description and Bayes estimation results are given in Section
4.5 of [6]. Here, we further provide the results for Bayesian model selection.

We calculate the Bayes factors to determine which model best describes the OTR 10-
year Treasury note transactions data. Table 4.2 reports the daily average Bayes factors
and the corresponding posterior model probabilities on selected days. By the third trading
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Table 4.1
Bayes factors for the simulated dataset

Bayes Factors Posterior Model Probabilities

N B41 B42 B43 B31 B32 B21 P(Model 1) P(Model 2) P(Model 3) P(Model 4)

1 1 1 1 1 1 1 0.25 0.25 0.25 0.25
200 253.6 253.6 1.0 253.6 253.6 1.0 0.0020 0.0020 0.49804 0.49803
1000 115485.7 115485.7 1.0 115486.1 115486.1 1.0 0.00000 0.00000 0.50000 0.50000
1001 250876.6 114265.0 2.4 104208.0 47462.8 2.2 0.00000 0.00001 0.29347 0.70652
1050 5.89E+12 180017.5 214912.578 27396860 0.80 7.43E+07 0.00000 0.00001 0.00000 0.99999
2000 2.87E+21 9.51E+13 262700.594 1.09E+16 3.62E+08 6.77E+07 0.00000 0.00000 0.00000 1.00000

200 400 600 800 1000 1200 1400 1600 1800 2000
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Figure 4.1. Trade-by-Trade Posterior Model Probabilities (PMP) for Models 1-4 (Simulated data)

day (8/17/2000), the Bayes factors B41, B42, B31 and B32 exceed the benchmark 150 value.
These factors increase to roughly 2.5E6 by the end of the first week of data (8/21/2000),
and favor models employing the buyer-seller initiation dummy ( Models 3 and 4). The first
news event in the sample occurs on 8/22/2000, when the Federal Reserve chose to keep
the Fed-funds rate unchanged. The day before this announcement, the recursive algorithm
assigns equal posterior probabilities for Models 3 and 4. After the announcement, the
recursive algorithm begins to favor Model 4, with the posterior model probability slightly
higher (62%) than for Model 3 (38%). Then, the posterior model probabilities keep stable
until the second news announcement occurs on 9/1/2000, when the Labor Department
released an unemployment report. The market exhibited increased volatility on this news
release, and this is reflected in both the Bayes factors and the posterior probabilities.
The recursive algorithm picks Model 4 at this point, assigning it a nearly-one (0.999999)
posterior model probability. The posterior model probabilities remain stable thereafter
for each of the models. Figure 4.2 plots the trade-by-trade posterior model probabilities
for Models 1 to 4 with the same color-distinctive shaded areas marking news period and
further upholds the above description.

The above empirical mode selection results further confirm that both information-based
and inventory-based effects can explain the observed volatility microstructure in the OTR
10-year Treasury note market. Moreover, the example given here further demonstrates
that the Bayesian model selection approach with computational algorithms can provide a
new method for tests of UHF financial market data.
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Table 4.2
Average Bayes Factors for selected dates, 10-year OTR Note, 8/15/2000 - 12/31/2000

Bayes Factors Posterior Model Probability

Date B41 B42 B43 B31 B32 B21 P(Model 1) P(Model 2) P(Model 3) P(Model 4)

8/15/2000 30.3 30.3 1.0 30.3 30.3 1.0 0.015970 0.015970 0.484032 0.484028
8/16/2000 94.8 94.8 1.0 94.8 94.8 1.0 0.005219 0.005219 0.494782 0.494780
8/17/2000 665.7 665.7 1.0 665.7 665.7 1.0 0.000750 0.000750 0.499252 0.499248
8/21/2000 3.4E+07 3.4E+07 1.0 3.4E+07 3.4E+07 1.0 0.000000 0.000000 0.500001 0.499999
8/22/2000 3.7E+09 7.0E+09 1.7 2.2E+09 4.2E+09 0.52 0.000000 0.000000 0.376743 0.623257
8/30/2000 3.5E+16 6.6E+16 1.7 2.1E+16 4.0E+16 0.52 0.000000 0.000000 0.375367 0.624633
9/1/2000 1.3E+19 3.3E+11 1.2E+11 1.1E+08 2.9E+00 4.0E+07 0.000000 0.000000 0.000000 1.000000
9/29/2000 1.53E+29 2.15E+12 2.64E+19 5.80E+09 8.16E-08 7.11E+16 0.000000 0.000000 0.000000 1.000000

12/29/2000 3.41E+33 2.91E+07 1.84E+34 1.12E+08 1.45E-27 7.42E+34 0.000000 0.000000 0.000000 1.000000
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Figure 4.2. Trade-by-Trade Posterior Model Probabilities (PMP) for Models 1-4 (Bond data)

5. Conclusions. To quantify model uncertainty for a class of partially-observed Markov
models with MPP observations for UHF data, we adopt Bayesian approach and develop
Bayesian model selection via filtering equations. We derive the related filtering equations
and prove a weak convergence theorem. We illustrate how to develop efficient recursive
algorithms to implement online model selection, and apply the approach to the four con-
crete models constructed for U.S. Treasury Notes trade-by-trade data from GovPX. We
show that the computed Bayes factors and the posterior model probabilities are sensitive
in discovering model change by simulation. We apply the computational algorithms to the
Treasury Notes transaction data and further support the empirical findings in [6].

Besides the research topics discussed in [6], we would like to add one more possible
topic particularly related to model selection. There are two classes of important bench-
mark models in empirical and mathematical finance: stochastic volatility models and ex-
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ponential Lévy models. With the speed gained by more efficient algorithms and the GPU
high performance computing power, real-time model uncertainty quantification for the two
model classes is an exciting research area.
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Appendix A. Proofs for Main Results. First, we prove four lemmas, which are used
in proving Theorem 3.1.

A.1. Four Lemmas and their Proofs. Lemma A.1. Suppose that X has finite expecta-
tion and is H-measurable, and that D is independent of H∨G. Then, E[X|G∨D] = E[X|G].

Proof. E[X|G] is G-measurable, and therefore, G ∨D-measurable. Dynkin Class Theo-
rem (see, for example, Page 497 of [4]) implies that it suffices to show that for A = G

⋂

D,
where G ∈ G and D ∈ D,

∫

A
XdP =

∫

A
E[X|G]dP . Now,

∫

A
XdP =

∫

G
⋂

D
XdP =

E[XIGID] = E[XIG]E[ID] = E[E[XIG|G]]E[ID ] = E[IGE[X|G]]E[ID ] = E[IGE[X|G]ID ] =
∫

G
⋂

D
E[X|G]dP =

∫

A
E[X|G]dP. The third and sixth equalities are because of the inde-

pendence between D and H ∨ G.

Lemma A.2. Suppose that a vector stochastic processes X is independent of a marked
point process Φ with compensator µ(dy)dt and that V is an observable deterministic process.
Let M(t) be a martingale with respect to {FX,V

t } with E(M(0)) = 0 and let U be FX,V,Φ
t -

predictable. If E[|
∫ t

0 U(s)dM(s)|] < ∞. Then E[
∫ t

0 U(s)dM(s)|FΦ,V
t ] = 0.

Proof. Independence of X and Φ implies that M(t) is still a martingale with respect to
FX,V,Φ
t and makes

∫

U(s)dM(s) well defined. It suffices to show that for every bounded,

FΦ
t -measurable random variable H, EQ[H

∫ t

0 U(s−)dM(s)] = 0. Since Φ is a unit Poisson
random measure under Q, martingale representation theorem (page 343 in [16]) gives that
there exists a predictable g(t, y) such that

H = H0 +

∫ t

0

∫

Y

g(s, y)(Φ(d(s, y)) − µ(dy)ds),

where H0 is a constant and Y is the marked space of Φ. Observe that the independence
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implies [M,Φ] = 0. The formula of integration by part gives

(∫ t

0
U(s)dM(s)

)(∫ t

0

∫

Y

g(s, y)(Φ(d(s, y)) − µ(dy)ds)

)

=

∫ t

0

(
∫ s

0

∫

Y

g(u, y)
(

Φ(d(u, y)) − µ(dy)du
)

)

U(s)dM(s)

+

∫ t

0

∫

Y

(∫ s

0
U(u)dM(u)

)

g(s, y)
(

Φ(d(s, y))− µ(dy)ds
)

Then, EQ[H
∫ t

0 U(s−)dM(s)] = 0 under the given moment condition, because all the
integrators are martingales.

Lemma A.3. Suppose a vector stochastic process X and a Poisson random measure Φ
with compensator µ(dy)dt are independent. Suppose that U is FX,Φ,V

t -predictable where V
is an observable deterministic process and E[

∫ t

0

∫

Y
|U(s, y)|µ(dy)ds] < ∞. Then,

E
[

∫ t

0

∫

Y

U(s−, y)Φ(d(s, y))
∣

∣

∣
FΦ,V
t

]

=

∫ t

0

∫

Y

E[U(s−, y)|FΦ,V
s ]Φ(d(s, y)).

Proof. Again, independence of X and Φ makes
∫ t

0

∫

Y
U(s−, y)Φ(d(s, y)) well defined

with the filtration FX,V,Φ
t where Y is the marked space of Φ. Since U is cadlag, there is a

cadlag version of E[U(t, y)|F
~Φ,V

t ] by [19].

We first start with U as a simple process. Assume that {Aj}
m
j=1 is a partition of Y and

that t0 = 0 and tn+1 = t. Let U(t, y) =
∑m

j=1 ξ0jI{0}×Aj
(t, y)+

∑m
j=1

∑n
i=0 ξijI(ti,ti+1]×Aj

(t, y)

where ξij is FX,Φ
ti

-measurable. Then, with Φ(Aj , 0) = 0,

E[

∫ t

0

∫

Y

U(s−, y)Φ(d(y, s))|FΦ,V
t ]

=

m
∑

j=1

n
∑

i=0

E[ξij |F
Φ,V
t ]

(

Φ(Aj , ti+1)− Φ(Aj , ti)
)

=

m
∑

j=1

n
∑

i=0

E[ξij |F
Φ,V
ti

]
(

Φ(Aj , ti+1)− Φ(Aj , ti)
)

=

∫ t

0

∫

Y

E[U(s−, y)|FΦ,V
s ]Φ(d(y, s))

Since

E

∣

∣

∣

∣

∫ t

0

∫

Y

U(s−, y)Φ(d(y, s))

∣

∣

∣

∣

≤ E[

∫ t

0

∫

Y

|U(s−, y)|µ(dy)ds] < ∞,

and Φ is a random count measure with finite variation, we can extend U to predictable
integrand as we define the stochastic integral for predictable integrand. (See, for example,
Section IV.2 of [17]).
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Lemma A.4. Suppose two vector stochastic processes X and Y are independent and Y
has independent increments. If U is FX,Y,V

t -adapted satisfying
∫ t

0 E[|U(s)|]ds < ∞ , then

EQ
[

∫ t

0
U(s)ds|FY,V

t

]

=

∫ t

0
EQ[U(s)|FY,V

s ]ds.

The proof is similar to that of Lemma A.3.

A.2. Proof of Theorem 3.1. We employ the reference measure approach originally
used in [20].

Let Mf (t) = f(θ(t),X(t))− f(θ(0),X(0))−
∫ t

0 Avf(θ(s),X(s))ds. Under Q, Mf (t) re-
mains a mean-zero martingale. Since [

∫

Avf(θ(s),X(s))ds, L]t = 0, we have that [Mf , L]t =
0. Then, the formula of integration by parts (see [17], page 60) gives

f(θ(t),X(t))L(t) = f(θ(0),X(0))L(0) +

∫ t

0
L(s−)dMf (s)

+

∫ t

0

∫

Y

f(θ(s−),X(s−))
[

ζ(s−, y)− 1
]

L(s−)Φ(d(s, y))

+

∫ t

0
L(s)

{

Avf(θ(s),X(s))−

∫

Y

f(θ(s),X(s))
[

ζ(s, y)− 1
]

µ(dy)

}

ds.

(A.1)

We take conditional expectations with respect to the reference measure Q given the
observed history of FΦ,V

t on both sides of Equation (A.1). Then, we apply the four lemmas
given in the previous section.

Observe that FΦ
0<s≤t is independent of FΦ

0 and Fθ,X,Φ
0 , because of the independence

between Φ and (θ,X) and the independent increments of Φ. Since V is an observable deter-

ministic process, we obtain that D = FΦ,V
0<s≤t is independent of G = FΦ,V

0 andH = Fθ,X,Φ,V
0 .

Then, Lemma A.1 implies EQ[f(θ(0),X(0))L(0)|FΦ,V
t ] = EQ[f(θ(0),X(0))L(0)|FΦ,V

0 ] =
ρ(f, 0).

Under the reference measure Q, (θ,X) and Φ are independent and Mf (t) is still a

Fθ,X
t -martingale. We can write Q = Pθ,x|v×QΦ. Also, U(t) = L(t) is Fθ,X,Φ,V

t -predictable
and V is deterministic. Assumption 2.5 and (3.2) imply that L(t) is a local martingale.
Since L(t) is nonnegative, it is a supermartingale. Then, EQΦ [L(t)] ≤ 1 Pθ,x|v−a.s., and

we obtain that EQ[|
∫ t

0 L(s−)dMf (s)|] ≤ EQ[|Mf (t)|] < ∞. Hence, Lemma A.2 implies

EQ[
∫ t

0 L(s−)dMf (s)|F
Φ,V
t ] = 0.

To apply Lemma A.3 under Q, we show that the moment condition holds. We can
take f to be bounded. Since

∫ t

0

∫

Y
EQ[L(s−)]µ(dy)ds = µ(Y)t < +∞ by Assumption

2.4, it suffices to show that EQ[
∫ t

0

∫

Y
|ζ(s−, y)|L(s−)µ(dy)ds] < +∞. Since ζ(t, y) =
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λ(t, dy)/µ(dy) > 0,

EQ

[∫ t

0

∫

Y

|ζ(s, y)|L(s)µ(dy)ds

]

≤ EQ

[∫ t

0

∫

Y

λ(s, y)L(s)ds

]

= EQ

[∫ t

0
λ̄(s)L(s)

[

∫

Y

p(dy|X(s))
]

ds

]

≤

∫ t

0
EQ[λ̄(s)L(s)]ds =

∫ t

0
EP [λ̄(s)]ds < ∞,

where the last inequality is by Assumption 2.5. Hence, Lemma A.3 gives

EQ
[

∫ t

0

∫

Y

f(θ(s−),X(s−))
[

ζ(s−, y)− 1
]

L(s−)Φ(d(s, y))|FY,V
t

]

=

∫ t

0

∫

Y

ρ((ζ(y)− 1)f, s−)Φ(d(s, y)).

Similarly, the conditions of Lemma A.4 are met and it implies

EQ
[

∫ t

0
L(s)

{

Avf(θ(s),X(s))−

∫ t

0

∫

Y

f(θ(s),X(s))
[

ζ(s, y)− 1
]

µ(dy)

}

ds|FΦ,V
t

]

=

∫ t

0
ρ(Avf, s)ds−

∫ t

0

∫

Y

ρ(ζ(s, y)− 1)f, s)µ(dy)ds

Summarizing the above, we have the SDE for ρ(f, t), which is Equation (3.7). �

A.3. Proof of Theorem 3.2. We will show that qkj(fk, t) satisfies Equation (3.8), and

when a
(k)
j (θ(k)(t), ~X(k)(t), t) = aj(t) Equation (3.8) reduces to Equation (3.10). Then, by

symmetry, qjk(fj , t) satisfies Equation (3.9) and, in the special case, (3.11). Recall that
ρj(fs, t) satisfies Equation (3.7). Then applying Ito’s formula for semi-martingales ([17])
and simplifying gives us

ρk(fk, t)

ρj(1, t)
=

ρk(fk, 0)

ρj(1, 0)
+

∫ t

0

∫

Y

[ρk(fk, s)

ρj(1, s)
−

ρk(fk, s−)

ρj(1, s−)

]

Φ(d(s, y))

+

∫ t

0

∫

Y

[ρk(A
(1)
v fk, s)

ρj(1, s)
−

ρk(ζk(y)fk, s)

ρj(1, s)
+

ρk(fk, s)ρj(ζj(y), s)

ρ2j(1, s)

]

ds.

(A.2)

First, observe that

ρk(fk, s)ρj(ζj(y), s)

ρ2j(1, s)
=

ρk(fk ,s)
ρj(1,s)

ρj(ζj(y),s)
ρk(1,s)

ρj(1,s)
ρk(1,s)

=
qkj(fk, s)qjk(ζj(y), s)

qjk(1, s)
.

Second, we make the integrand of the last integral in Equation (A.2)predictable. If a trade
at y occurs at time s, then Equation (3.7) implies that

ρk(fk, s)

ρj(1, s)
=

ρk(fk, s−) + ρk((ζk(y)− 1)fk, s−)

ρj(1, s−) + ρj(ζj(y)− 1, s−)
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=
ρk(ζk(y)fk, s−)

ρj(ζj(y), s−)
=

qkj(ζk(y)fk, s−)

qjk(ζj(y), s−)
qjk(1, s−).

With the above two observations, Equation(A.2) implies Equation (3.8).
When both models have the common FΦ,V

t -measurable trading intensity, Equation
(3.8) clearly is simplified to Equation (3.10) by the similar two observations that simplifies
π(f, t) in the proof of Theorem 3.1 of [6]. �

A.4. Proof of the Uniqueness for Theorems 3.1, 3.2 and Theorem 3.1 in [8]. As-
sumption 2.5 ensures the existence of a measure, under which the Φ is an MPP with
compensator π(ζ(y), t)µ(dy)dt. As in [8], this allows us to formulated the problems as
filtered martingale problems (FMP) proposed in [12] and further developed in [11]. Then,
the uniqueness of FMP gives the uniqueness of the unnormalized and normalized filtering
equations. The uniqueness in Theorem 3.2 can proven in a similar manner as in [9] and
[18]. For technical details, interested readers are referred to the aforementioned references.
�.

A.5. Proof of Theorem 3.3. Because (θǫ,Xǫ) ⇒ (θ,X) in the Skorohod topology, (1)
is obtained by Continuous Mapping Theorem (Corollary 3.1.9 of [4]).

For proving (2) or (3), the idea comes from Theorem 2.1 of [5] and Theorem 1 and
Corollary 1 of [10] on weak convergence of conditional expectation, respectively. As in
our setup excluding the superscript (k), (θ,X) and Φ are independent under a reference
measure Q with R-N derivative L, and (θǫ,Xǫ) and Φǫ are independent under a reference
measure Qǫ with R-N derivative Lǫ. According to the aforementioned theorems, it suffices
to prove ((θǫ,Xǫ),Φǫ, Lǫ) ⇒ ((θ,X),Φ, L). Recall the R-N derivative dPǫ/dQǫ is

(A.3) Lǫ(t) = exp

{

∫ t

0

∫

Y

log ζǫ(s−, y)Φ(d(s, y)) −

∫ t

0

∫

Y

[

ζǫ(s−, y)− 1
]

µ(dy)ds

}

.

The tool to prove the above joint weak convergence is the weak convergence of stochas-
tic integrals with respect to semimartingale random measure developed in [14] (Theorem
4.2). This result is a generalization of Theorem 2.2 of [13] on the weak convergence of
stochastic integrals with respect to semimartingale. Observe that (θǫ,Xǫ) ⇒ (θ,X) implies
(θǫ,Xǫ, ζǫ) ⇒ (θ,X, ζ) again by Continuous Mapping Theorem. Since Φǫ and Φ have the
same distribution under reference measures, we actually have (θǫ,Xǫ, ζǫ,Φǫ) ⇒ (θ,X, ζ,Φ).
Note that Φǫ and Φ are H#-semimartingale (Example 3.18 of [14]). Hence, Continuous
Mapping Theorem and Theorem 4.2 of [14] imply that

(θǫ,Xǫ,Φǫ,

∫

log(ζǫ)dΦǫ) ⇒ (θ,X,Φ,

∫

log(ζ)dΦ),

and

(θǫ,Xǫ,Φǫ,

∫

(ζǫ − 1)ds) ⇒ (θ,X,Φ,

∫

(ζ − 1)ds),

and then ((θǫ,Xǫ),Φǫ, Lǫ) ⇒ ((θ,X),Φ, L).
The weak convergence of (4) and (5) comes from the weak convergence of (2) and again

Continuous Mapping Theorem. �
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