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Outline

f.ﬂ UHF data, and Marked Point Process (MPP) T

o Two Different Views of UHF data
» An Irregularly-Spaced Time Series
» A Realized Sample Path of Marked Point Process

® A New Model with two Equivalent Representations
» Filtering with MPP (counting process) Observations
» Random-arrival-time State Space Model

® Bayesian Inference via Filtering
» Likelihoods, Posterior, Bayes factors and Posterior model
probabilities
» Filtering equations and evolution equations for Bayes factors
» Markov chain approximation method and its consistency.

® Simulation and Empirical Examples
\_.. Conclusions and Future Works J
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UHF Data and M arked Point Process
L o

» Observations occur at varying random time intervals
o Market microstructure noises (frictions) exist in price data

I {(T,, X,)}, where {T,,} increasing, I.e.
Tn S Tn—|—1-
I {(T,, X,)} with {T;,} from a conditional

Poisson Process (or Cox process, or doubly stochastic Poisson).

o -
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An Irregularly-Spaced Time Series

f: Engle (2000) — Data: {(At;,y;),i =1,..., N} where At; =t; — t;_1. T
r
(Ati,yi)|Fica ~ f(Ati,yil Ati 1, §i-150)
where z; = {z;, 2,1, ..., 21 }-
F(A, yi| Ati_1, i1 0) = g(Ati| Ati_1, ¥i—1;0)q(yi| Ati, Ati_1,¥;—1;60) (1)

Similar structure as in Eq.(4)
9

N N
[(AY;0) = ZIOgQ(Ati’Atz‘—h Ji—1;0) + Zlog q(yilAti, Ati_1,§i—1;0)

N B
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Related Developments

» model by Engle and T
Russell (1998), and logarithmic ACD by Bauwens and Giot (2000),
threshold ACD by Zhang, Russell and Tsay (2001), Asymmetric ACD
by Bauwens and Giot (2003)

» Ordered Probit model by Hausman, Lo and Mackinlay (1992), Price
Change Duration model by McCulloch and Tsay (2001), Activity
-Direction -Size model by Rydberg and Shepherd (2003),
Autoregressive Conditional Multinomial- ACD by Russell and Engle
(2005)

»# Bivariate Point process model by Engle and Lunde (2003), and
Autoregressive Conditional Intensity model by Russell (1999)

o UHF-GARCH by Engle (2000), ACD-GARCH by Ghysels and Jasiak
(1998), Engle and Zheng (2007)

& The Second View:

| Zeng (2003) .

Modelina Hioh Freauencyv Data in Finance. Stevens Institute of Technoloav Julv 10 - 12 2009 — n. 5/3



Construction of Price from Value

» Intrinsic value process: X () T

Markov process, (0, X), is the solution of a
martingale problem for a generator A such that

My(t) = f(8(), X (1) = Jy Af(8(s), X (s))ds
is a 7~ -martingale.
o Trading times: ¢1,to,...,t;,... follows a conditional Poisson process
with a(0(t), X (t),1).
® Price att;: Z(t;) = F(X(t;))
where F', a random transformation modeling market microstructure
noise, is specified by the transition probability p(Z(¢;)| X (¢;); 0).

Related to (1) the time series structure models surveyed in
Hasbrouck (1996) and (2) the Two-Scaled Realized Volatility (TSRV)
Models for in Zhang, Mykland, and Ait-Sahalia (2005), Li and Mykland
(2007), BHLS (2008) and many others.

o -
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Price Clustering in Treasury Notes

- .

Price fraction of US Treasury 10-year note
I I I
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A Collection of Counting Processes

About One-Half Day’s Transaction Data of Microsoft
94.0 A
©93.5
.
5
93.0 A
92.5 A . . . .
61.3 61.4 61.5 61.6
day

-
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A Collection of Counting Processes

About One-Half Day’s Transaction Data of Microsoft

94.0 -

price

93.0 -

92.5 -

61.3 61.4 61.5 61.6

Y(t) = | : (3)

\ No(fy Mn(8(s), X (s), 5)ds) |

where Y (t fo X (s), s)ds) records the cumulative # of
trades that have occurred at the jth price level up to time ¢. J

Modelina Hioh Freauencyv Data in Finance. Stevens Institute of Technoloav Julv 10 - 12 2009 — n.  8/3



Other Assumptions of Model |

fFiltering with counting process observations

» (Ny,...,N,) are unit Poisson processes under
measure P.

) (#,X), Ny,...,N, are independent under P.

I 0<a(f(t),X(t),t) <C forsome C > 0 and all

a(t), X (t),t > 0.

r Intensities: \; (0, x,t) = a(0, x,t)p(y,|z), where
a(x,0,t) Is the total trading intensity, and p,; = p(y,|z) Is the transition

probability from z to y;.

Signal: (6,X)  Observation: Y or Z.

o

-
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o

106

Price and Order Flow

Price and cumulative log{order flow) of US Treasury 10-year note
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Price and Economic Announcements

10years 2nd Instrument

106 T T T T T T
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A Motivating Example

f‘/}: observable variable such as T
In Treasury market.

»# Intrinsic value process:

dX
Tt = ,Lbdt + (O' + I£1V1 (t) + HQVQ(t))dBt
t
o Trading intensity: «a(V*'~, Z'~,t) can depend on the past history of
V and Z, where Vt() = V( A t). E.Q. a(V(ti_l), Z(ti_l), Ai_l,t) for
ti—1 <t <. This allows
o Price attime ¢;:

where F'Is a random transformation specified by a transition probability
p(Z(t:)| X (L:);0).

o -
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Random-arrival-time State-Space M odél

. .

State process: X (t).
IS the same as Assumption 1.1, but both 6 and X

can be vector processes,
t
My(t) = f(O(), X (t) — [y Auf(0(s), X(s))ds
is a 7" -martingale.
o Eventtimes:. t¢1,to,...,t;,...follows a point process with a
stochastic intensity \(6(¢), X (¢),V?, Z*,t) where Vi(-) = V(- A t).
o Observation at¢;:
Z(ti) = F(X(t:))

where F'is a random transformation with a transition probability
p(Z(tz)|X(tz), H(ti), Vti_, Zti_, t))

o -
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Filtering with M PP Observations

|7.o Mark space: U; measure space: (U,U, ), p: finite measure; T
¢ is a Poisson Random Measure (PRM) on U/ x B[0, o) x B0, c0) with
mean measure u x m x m. For A € U,

Y(A,t) = / Lo\ (0(s—), X (s—), Vo, 25— su,s—)] (V)& (du X ds X dv),
Ax[0,t] x[0,+00)

where Y (A, t) is a counting process recording the cumulative number
of events that have occurred in the set A up to time ¢.

~

Y(A,t) =Y (A, t) — /Ax[o . AO(s), X (s),V?® Z% u,s)u(du)ds

IS a martingale.

Signal: (0, X) Observation: (Y,V)or (Z,V).
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The Reference M easure

f.o Under the reference measure Q, For A € U, T
Y (A t) = / Lo 17(v)&(du x ds x dv),
AXx1[0,t] xX[0,+00)

where Y (A, t) IS a counting process recording the cumulative number
of events that have occurred in the set A up to time ¢.

V(A1) = V(A 1) — /A oy s = (4,0~ Ay

IS a martingale.

r U={12,--- ,n}, A=jand V and Z are not in the
Intensity,
Under P, Y (A,t) =Y (4,1)

\_Under Q, Y(A,t) =Y(j,t)

N (fy 2j(0(s), X (s), 5)ds).
Y;(t) Is a unit Poisson process. J
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Other Assumptionsof Modd ||

|7.o ¢ i1s a PRM with the mean measure © x m x m T
under P, where  is finite measure.
I (0, X) and & are independent under measure P.
o Fort € (t;,t;11], there exists a positive constant,

C', which may depend on {t¢,ts,--- ,¢;} and ¢, such that
0 < N6, XtV Ztt) < C.
e Stochastic intensity kernel.

Mu,t) = Mu, t;0(t—), X (t—), V=, Z"))

— S\(Q(t_)7 X(t_)7 Vt_a Zt_a t—)p(U’X(t), H(t_)7 ’ Vt_a Zt_a t_) (4)
where p(u| X (t);0(t—), V*—, Z*~,t)) is the transition probability from X (¢)

to w.

Remark: Note the similarity between Eq.(4) and Eq.(1).
_® -
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Examplesl|

. .

o U ={1}: Cox process and Exponential ACD model (Engle and
Russell 1998).

o U={g ol ... DY orRor R": UHF-GARCH model and many
previously reviewed models under the framework of Engle (2000).

# Zeng (2003) and its extension to multi-stocks (Scott and Zeng 2008).
» Estimating Volatility via filtering: Frey and Runggaldier (2001),
Cvitanic, Liptser and Rozovskii (2006), Ceci and Gerardi (2007a,b).

» Estimating Markov process sampled at conditional Poisson time:
Duffie and Glenn (2004).

» Classical examples: Segall, Davis and Kailath (1975), Bremaud
(1981), Liptser and Shiryayev (1978), Kliemann, Koch and Marchetti
(1990), and Last and Brandt (1995).

-
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Examples||

. .

» V; can change at random times (such as trading time) or
deterministic times (such as every 5 minutes or every day).

» V, can takes values such as +1 for the indicator of buyer or seller
initiating trade; or O or 1 for the indicator of a special period; or other
values such as order flow or a function of order flow.

# When X, is GBM, V; can be added in instantaneous expected return,
or instantaneous volatility, or in the trading noise.

# X, can be O-U process; CIR model; CES model; SV models; plus
jumps; plus regime-switching; with spikes; a-stable process; and
others. Then, V; can be added in the related parameters with different
economic interpretations.

# 7 can be trading prices or ask and bid quotes.

o -
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An Integral Form of Price

Ii.o Let Z

time ¢.

(t) be the price of the most recent transaction at or before

Z(t)=2Z(0)+ /[0 t]XU(u — Z(s—))Y (ds, du).

Remarks :

» This is the telescoping sum: Z(t) = Z(0) + >, -,(Z(t;) — Z(ti—1).
This form is similar to that of Skorohod (1989) for continuous time
Markov chain.

»# This form is essential for the
(Lee and Zeng 2009, for Model 1), and the
problem of the model (Xiong and Zeng 2009, for
Model I).

o -
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Joint Likeihood Function

-

» Continuous-time joint likelihood function of (6, X, Y):
o For Model I,

L(t) = % = exp Z/ log Ak (0(s—), X (s—),s—)dYx(s)

o For Model Il,

:exp{ /O t /U log A(w, 5;0(s—), X (s—), V*=, Z57)Y (ds, du)

[ st X620V 207) 1ty
| -
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Likelihoods and Posterior

S(f,1) = EQ£(0(t), X (1)) L(t)|F, " ]. Then, ¢(1,t) =
ER[L(t)|F)"] is the likelihood of Y or the integrated (marginal)
likelinood of Y after assigning a prior to (6(0), X(0)).

; is the conditional distribution of (6(¢), X (t)) given F," .
m; becomes the posterior after a prior is assigned.
m(f,t) = EP[f(0(t), X())|F, "] = [ f(0,2)m(df, d).

» Bayes theorem gives:

7T(fv t) —

SPDE for ¢; — unnormalized filtering equation
SPDE for m; — normalized filtering equation

-
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Bayes Factor and Likelihood Ratio

fSuppose there are two models: Model 1 and Model 2. T
two conditional ratio processes:

_ ¢1(f1,t) _ 92(f2,1)
¢2(17t) ¢1(17t)

The Bayes Factors: (the ratio of two integrated likelihoods)

ql(flat) and Q2(f27t)

gbl(l?t)
¢2(17t)

=qi(1,1) and By = Poll, ) = q2(1,7)

¢1(17t)

Bis =

» Strongly Reject Model 1 if BE5; is larger than 20.
» Decisively Reject Model 1 if BF5; is larger than 150.

o -
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Posterior Model Probabilities

|7Suppose we are comparing » models: My, My, --- , M,.
Let P(M;|F,"") be the prior probability of Model i.
the posterior model probability as

P(M;|Fy " )i(1,) [i MIF0) o

M]:-YV
PO = = p mgfwlt 2 panFT)

» If P(M;|F,")=1/q,forj=1,2,---,r, then

v, (L) I -1
PO = s iy = | 25 5]

» Select the model with highest posterior model probability.

o

()]

-
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Unnormalized Filtering Equation

f: (Zeng 2003, for Model 1) Under Assumptions 2.1-2.5, T
¢ 1S the unique measure-valued solution of the following SPDE, called
the unnormalized filtering equation:

o(f.) = 8(1,0) /chf ds—//qb s)pldu)ds
//¢ 5—)Y (ds, du), ®

for every t > 0 and f € D(A) with \(u) = A(u, s) given by (4).

o -
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Normalized Filtering Equation

=

|7 (continued) 7, Is the unigue measure-valued solution of
the following SPDE, called the normalized filtering equation:

r(f.1) = 7(f.0) + /O (A, 8)ds + /O (f. ) /U r(\(w), $)u(du)ds

. /O /U r(FA(u), s)p(du)ds + /O /U [W;{j(g‘? _‘)>—w<f,s—>]dy<ds,du>

Remark: When a(0t, X, V' Z* ¢ ) a(V*t, Zt t) (including )}
it can be simplified as: «(f,1t)

7(f,0) + / (Af, s ds+// fp —x(f, s—)|dY (ds, du)

Lwherep p(u| X (¢);0(t), Vi=, 2t t). J
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Evolution Equationsfor BF

r (Kouritzin and Zeng 2005, for Model I) Assume Model 1
has (Al, A1, u1) and Model 2 has (A2, s, u2). Both models satisfy
Assumptions 2.1-2.5. Then, (g1 ¢, g2.+) IS the unique pair
measure-valued solution of the following system of SPDEs,

0 (i) = q(f1.0) + /cn(Alfl, $)ds

+/O q;2(];1’8)/q2()\2( s) o (du) ds—/ /Q1 fidi(u), s)pi(du)ds

/ / q;f;\zl ))q2(1,8—)—Q1(f1,8—)}dY(dS,du)

and

q2(fa2,t) = ...
| -
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A Consistency Theorem

|7.o (Zeng 2003, and Kouritzin and Zeng 2005, for Model I) T
Suppose that Assumptions 2.1 to 2.5 hold for (¢, X,Y) and (0., X, Ye).
If (6., X.) = (0, X) as e—0, then for bounded continuous functions, f,
i) Yo=Y, (i) oe(f.t) = o(f.1), (i) me(f,t) = m(f,1).
In the two-model case for model selection, then
(V) gk (fr,t) = qr(fx,t) for £ = 1,2 simultaneously.
In the r-model case for model selection, then
V) P.(M;|FV) = P(M;|FPY), fori = 1,2, - - r simultaneously.

» First, use Kurtz and Protter (1996)’s theorem on convergence of
semi-martingale random measure and the Continuous Mapping

theorem to prove L. = L. Then, ((6., X.),Y.,L:) = ((8,X),Y, L).

# Second, use Goggin (1994)’s or Kouritzin and Zeng (2005)’s

theorems on convergence of conditional expectations and the

Continuous Mapping theorem to prove (ii), (iii), (iv) and (v). J
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Markov Chain Approximation M ethod

for computing nearly posterior, likelihoods, Bayes factors and posterior
model probabilities

For Example, to compute the nearly posterior:
»# Construct a Markov chain (6., X.) to approximate (6, X).

» Derive the filtering (or evolution) equations for (4., X, Y:).
. .

7T5(f, tz'_|_1—) = Wg(f, ti) + ftiz‘Jrl_ 7T5(A€f, S)dS

me(fitin) = RS

» Convert the equation for (6., X, Y.) to recursive algorithms by
» (a) representing 7. (-,t), for example, as a finite array
with components being = (f,t) for lattice-point indicator f;
L & (b) approximating the time integral with an Euler scheme.

-
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Review: Model for Treasury UHF Data

ﬁJoint with D. Kuipers and X. Hu) T

o

dX
Tt = ,Lédt + (O' + /€1V1 (t) -+ HQVQ(t))dBt
t

0 = (ILL7 g, pP, K1, /{2)

9 1 ) 5 0%

A, f(x,0) = ,ux%f(ﬁ,x) + 5(0 + K1v1 + Kov2) T pye) (0, z).

where Vi (t) is the indicator of buyer (+1) or seller (0) initiating;
V() 1s the indicator of macroeconomic news period (+1), otherwise (0).

r An (Exponential or Weibull) ACD model.

o -
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Modeling Trading Noise

f Price attime t;:  Z(t;) = F(X(t;)) = bi(R[X (t;), %] + Dy)

. Rz, +-], rounding function, where M = 64, 128.
e has a doubly-geometric distribution:
1— ifd=0
P{D=d} = P | | .
T —p)pMdl ifd=+L fori=1,2,3...
r a random biasing function

biasing rule: Set 2z’ = R[X(¢;), 7] + D; and z = Z(t;) = b(2’).
- If fractional part of 2’ is an even Mth, z stays on 2z’ w. p. 1.
- If the fractional part of 2’ is an odd AMth, then
2" moves to the closest M /2th w.p. «,
or z’ moves to the closest odd M /4th or integer w.p. £,
or z stayson z' w.p. 1 —a — G.
\—.L Parameters in the Model : (i, 0, p, k1, k2, a, B) + ACD’s.

=

-

Modelina Hioh Freauencv Data in Finance. Stevens |nstitute of Technoloav. Julv 10 - 12. 2009 — p. 30/3



Consistency of Bayes Estimates

-

r For the simple filtering model of GBM with factors
described above, when the clustering parameters («, 3) are known,
and 6 = (u, 0, p, k1, k2) has a prior, then, the Bayes estimates are
consistent almost surely. Namely, E[f(0)|F7"] — f(0) as t — oo for
bounded continuous function f.

o -
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Simulated Data

Time Series for Simulated Data

102 T T T T

101.5

101

Price

100.5

100

99.5 | | | |
0 0.5 1 1.5 2 2.5

Time(seconds) % 10°

-
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Bayes Est. for a Simulated Data Set

fTable 1. Bayes estimates for 2050 simulated dataT
when 50 data have extra volatility,

Models L o 0 K9
True 5.00E-8 2.00E-5 0.05 3.00E-5
Bayes Est. 4.27E-8 2.00E-5 0.0477 2.86E-5
(1.08E-8) (2.89E-14) (0.0056) (6.58E-6)

o -
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Estimation Results

fTabIe 2. Annualized Bayes estimates for 10yr Treasury UHFT
Data, 8/15/-12/31, 2000

Models L o 0 K1 K9
Case I 32.77% 5.04%  0.0538 -0.39% n.a.
only «; (4.58%) (0.11%) (0.0040) (0.05%) (n.a.)
Case Il: 13.60% 4.86%  0.0477 n.a. 3.87%
only x4 (7.34%) (0.05%) (0.0044) n.a. (0.29%)
Caselll: 33.71% 5.28%  0.0273 -0.59% 3.80%

both #,, ke (3.56%) (0.02%) (0.0043) (0.04%) (0.27%)

# These results are consistent with Fleming and Remolona (1999),
Green (2004) and Brandt and Kavacejz (2004): Primary impact:

L , Secondary impact: : J
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Conclusions and Future Works

Financial applications on market microstructure theory T

.

Exponential a-stable process as X (t)
Heston’s model as X (t)

Numerical efficient algorithms.

© o o 0

Statistics and information theory:
» Consistency, CLT for the estimators of parameters.
» Mutual information and its rate and its applications

® Mathematical finance:
» Option pricing and hedging, portfolio optimization, and utility
maximization.

® Applications to algorithmic trading?

Related papers, real data examples, Fortran codes are available at
htt p:// mendot a. unkc. edu/ paper-tick. htm

Modelina Hioh Freauencv Data in Finance. Stevens |nstitute of Technoloav. Julv 10 - 12. 2009 — p. 35/3



Real Data: FOMC Period |
f Time Series for 5Year Notes Aug 17 — Aug 30 2000 T

103.2 . . . . . .
Before Aug 22nd
Aug 22nd, 12 - 3 PM
After Aug 22nd

103.1

103

102.9

102.8
102.7} /\y |

102.6 ]

Price

102.5 .

102.4 | | | | | |
0 0.5 1 15 2 2.5 3 3.5

Time (seconds) % 10°

o -
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Real Data;: FOMC Period ||

Time Series for Aug 22nd

— Before 12PM —12 - 3 PM After 3SPM

102.8

102.78

102.76 \/\N/k

102.74

Price

102.72

102.7

102.68
7:12 AM 9:36 AM 12:00 PM 2:24 PM 4:48 PM 7:12 PM

Time

L -
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