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Abstract

The classical option hedging problems have been studied mostly under continuous-
time or equally spaced discrete time models, which ignore two important components
in actual price: random trading times and market microstructure noise . In this pa-
per, we study optimal hedging strategies for European derivatives based on a filtering
micromovement model of asset prices with the two commonly-ignored characteristics.
We employ the local risk minimization criterion to develop optimal hedging strate-
gies under full information. Then, we project the hedging strategies on the observed
information to obtain hedging strategies under partial information. Furthermore, we
develop a related nonlinear filtering technique under the minimal martingale measure
for the computation of such hedging strategies.
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1 Introduction

The literature on option pricing and hedging has been prolific since the seminal Black-Scholes
(BS) model was published in the early 1970s. Early research focuses on generalizing the BS
model to a more general setup such as diffusion models, stochastic volatility models, jump
diffusion models or time changed Levy processes (Carr and Wu 2004; Huang and Wu 2004).
Recent research focuses on incorporating default risk and credit risk (Duffie and Singleton
2003) or liquidity risk (Cetin, Jarrow and Protter 2006).

In another front, modeling the micromovement of asset prices has become important to
the econometrics population, because micromovement more accurately captures the price
behaviors at the micro level referred to as transaction or trade-by trade price behavior.
Micromovement data is named wltra-high frequency (UHF) data by Engle (2000) because of
their ultimate disaggregation nature.

UHF data have two characteristics which are different from the continuous-time models in
asset pricing, or the price macromovement referred to as the equally-spaced daily, or weekly
closing price behavior in the econometric literature. First, the micromovement observations
occur at varying random times. Engle (2000) treats UHF data as an irregularly-spaced time
series and proposes a general framework for jointly modeling time and price. He further
develops a UHF-GARCH model, extending the autoregressive conditional duration model in
Engle and Russell (1998). Engle and Russell (2005) provides a survey on such an approach.

The second stylized characteristic is that market microstructure noise exists in prices. In
contrast with information which has a long-term impact on price, noise only has a short-term
impact on price (Hasbrouck 1996). However, it is well-known that noise plays a fundamental
role in asset pricing, especially when modeling UHF data. The topics of the two recent
presidential addresses to the American Finance Association were “Noise” (Black 1986) and
”Friction” (Stoll 2000). Both address treated noise as an essential matter. Therefore, noise
must be incorporated in any suitable micromovement model.

Recently, extending the fast-growing literature on realized volatility (RV) models, Zhang,
Mykland and Ait-Sahalia (2005), Ait-Sahalia, Mykland and Zhang (2005), Bandi and Rus-
sell (2006), Diebold (2006), and Fan and Wang (2007) develop different realized volatility
estimators under the two-time-scale frameworks which incorporate market microstructure
noises. Especially, Li and Mykland (2007) shows that rounding noise in UHF data may
severely distort even the two-scale estimators of realized volatility, and the error could be
infinite.

In derivative pricing literature, the general assumption under most asset pricing research
is continuous-time trading. It is no surprise because of technical tractability. However,
this assumption obviously contradicts the two aforementioned stylized facts of UHF data.
The research for the models equipped with such characteristics is rare on option pricing
and hedging. We surmise that this is because those micromovement characteristics generate
difficulties in modeling, and further, generate the market incompleteness, making the hedging
and option pricing problem even more difficult .

One of the few exceptions is considered by Frey (2000). In Frey’s model, the security



price is modeled as an exponential martingale of a doubly stochastic Poisson process, whose
stochastic intensity depends on an unobservable state-variable process'. Clearly, Frey’s
model is able to capture the random arrival time nature of high frequency transaction data.
Due to the presence of jumps and stochastic intensity, the market is incomplete. Frey used
the risk minimization criterion proposed by Follmer and Sondermann (1986) to determine
hedging strategies. Along this line, Ceci (2006) studies risk minimizing hedging for a similar
model. However, market microstructure noise, a central piece in micromovement, is missing
in these two models.

Zeng (2003) proposes a general filtering micromovement model (FM model, as we simply
call it) for asset price, where the two stylized facts of micromovements are incorporated in
a consistent manner. Namely, the FM model accommodates not only random trading times
as Frey’s model, but also market microstructure noise in UHF data. In the FM model,
there is an unobservable intrinsic value process for an asset, which corresponds to the usual
price process in the option pricing literature. The intrinsic value process is the permanent
component and has a long-term impact on price. Prices are observed only at random trading
times which are driven by a conditional Poisson process, whose intensity may depend on
the intrinsic value. Prices are distorted observations of the intrinsic value process at the
trading times by noise, which is the transient component and only has a short-term impact
(when a trade happens) on price. Financial noise is explicitly modeled by the transition
probability from the intrinsic value to the price at trading time. This way is flexible enough
to accommodate the rounding noise aforementioned in Li and Mykland (2007) and more
complicated noise (see examples in Zeng 2003 and Spalding, Tsui and Zeng 2006).

In this setup, the price process is a semimartingale rather than a martingale under the
physical measure, which is a more realistic hypothesis. One important feature of the FM
model is that trade-by-trade prices can be viewed as a collection of counting processes of price
levels and the model can be framed as a filtering problem with counting process observations.
Then, the filtering equation characterizing the evolution of the conditional distribution of
the unobservable intrinsic process is derived. The related numerical solution and the Bayes
estimation via filtering for the intrinsic value process and the related parameters in the model
are developed. Furthermore, Bayesian hypothesis testing or model selection via filtering for
this class of models has been developed in Kouritzin and Zeng (2005).

In this paper, we study derivative pricing and hedging when making use of a FM model,
where the intrinsic value process is assumed to be a diffusion process. The contingent claim
is written upon the observable price process only as in the real world instead of including
the unobservable intrinsic value process. The market under the FM model has jumps with
only partial information and is clearly incomplete. We have to choose alternative approaches
(see Schweizer 2001 for a survey) such as mean-variance hedging, local risk minimization or
utility maximization, to obtain a reasonable hedge. We follow Frey (2000) to adopt the risk
minimization criterion. This approach has the important benefit of offering a simple form
of an optimal hedging strategy, allowing fairly explicit computations. However, unlike the

IWe will describe it further in Section 2.1



models in Frey (2000) and Ceci (2006), the price in the FM model is a semimartingale, not
a martingale. Then, the risk minimization criterion proposed by Follmer and Sondermann
(1986) (as used in Frey 2000 and Ceci 2006) does not exist. Instead, we use the local
risk minimization criterion developed in Féllmer and Schweizer (1991), which requires a
notion of minimal martingale measure. Follmer and Schweizer (1991) uses a continuous
semimartingale. Their results are not obviously correct if the price process has jumps (as in
the FM model) because of some technical issues. Lee and Protter (2008) overcomes those
technical difficulties and extends the results to the case with jumps under mild conditions.
In this paper, we employ the same approach in Lee and Protter (2008) to prove that the
optimal strategy can be again expressed in terms of the minimum martingale measure.

To solve the option pricing and hedging problem for the FM model, we first identify
the minimal martingale measure. Then, we derive the pricing equation and the locally
risk-minimizing hedging strategy with complete information. In the case of incomplete in-
formation, we project the hedging strategy under full information to the partially-observed
prices and we show the computation of such hedging strategy is closely connected to the
filtering technique developed in Zeng (2003). Since the price process is a semi-martingale
instead of a martingale under the physical measure, the optimality of the projected hedging
strategy remains open.

The outline of the paper is as follows. Section 2 briefly reviews the FM model in two
equivalent representations and presents the integral (and differential) form for the evolution
of the most recent price, which is crucial for option pricing. Section 3 provides a concise
summary of local risk minimization theory. Section 4 studies option pricing based on the
FM model under the local risk minimization and Section 5 concludes.

2 The Micromovement Models

After briefly describing Frey’s model, this section focuses on presenting a sub-model of Zeng
(2003), whose option pricing and hedging is considered in this paper. There are two equiva-
lent representations of the model, described in sections 2.2 and 2.3, respectively. Section 2.4
presents an integral form of the most recent price, which plays a crucial rule in Section 4.

2.1 Frey’s model

Let Z, be the percentage return in the nth trade and {Z,} are i.i.d. random variables on
(—1,400) with mean zero. Note that Z, has a lower bound of —1, 100% loss, due to the
limited liability of stocks. Let IN; be a conditional Poisson process with the conditional
stochastic intensity function a(Xy,t), and X, is a stochastic factor following a diffusion:
dX; = p(Xy)dt + o(X)dB; where B, is a standard Brownian motion. Frey interprets X; as a
kind of stochastic volatility. With these notations, Frey assumes the stock price, S;, follows

dS; = S;_dR; with an initial price Sp, (1)



where R; = ZQL Z, is the return process.

In the models of Ceci (2006) or Cvitnic, Lipster and Rozovsky (2006), X; or Ny, the
point process of observation times, are more general processes. However, it is clear that all
of these models do not incorporate financial noise.

2.2 Representation I: Construction of Price from Intrinsic Value

The FM model is predicated on a simple intuition that the price is formed from the intrinsic
value process of an asset corrupted by trading (or market microstructure) noise. Let X =
(X;)o<t<r be the intrinsic value process. We use Y = Y (¢) or Y (t) for ¢ € [0, 7] to denote
the price process.

Throughout the rest of Section 2 and in Section 4, we assume that (X,Y) or (X,Y) is
on a filtered complete probability space (2, F, (Ft)o<t<r, P) with the usual hypotheses (see,
for example, Protter 2004), the o-field is F = Fr and P is the physical probability measure.
All processes used in this paper are adapted to this filtration. We define subfiltrations
FY = 0((X,,Y,) : 0 < s <t),and FY = o(Y, : 0 < s < t) for hedging and pricing
purposes, which we will use in Section 4.3.

Assumption 1. X;, the intrinsic value process of an asset follows a diffusion:
dXt = [L(Xt)dt + O_(Xt)dBt,
and X; has a unique weak solution.
The infinitesimal generator of X is given by
0 1 0?
AS(@) = ()L () + Lo (@) 5 (). )

Obviously, Assumption 1 includes geometric Brownian motion, used in the Black-Scholes
model. The intrinsic value process can not be observed directly, but can be partially observed
through the price process, Y. Due to price discreteness, Y is in a discrete state space given
by the multiples of tick, the minimum price variation set by trading regulation. Y is a
distorted observation of X at some random times.

There are three general steps in constructing Y from X.
e Step 1 : Specify X(¢) as in Assumption 1.

e Step 2 : Specify the trading times t1,%o,...,%;, ..., which are driven by a conditional
Poisson process with a conditional intensity function a(X (¢),1).

e Step 3 : Y (t;), the price at time ¢;, is specified by

where y = F(x) is a random transformation with the transition probability p(y|z),
modeling trading noise.



Under this construction, information affects X (¢), the intrinsic value of an asset, and
has a permanent influence on the price while noise affects F(z), the random transformation,
and has only a transitory influence on price. This formulation is similar to the time series
structural models applied in many market microstructure papers (see Hasbrouck (1996), a
survey paper, and Hasbrouck (2002)) in that X (¢) is the permanent component and F(z)
is the transient component. Moreover, the formulation is closely related to the two-time-
scale frameworks incorporating market microstructure noises in the fast growing literature
of realized volatility estimators. See Zhang, Mykland and Ait-Sahalia (2005), Ait-Sahalia,
Mykland and Zhang (2005), Bandi and Russell (2006), Diebold (2006), Fan and Wang (2007),
and especially Li and Mykland (2007).

Examples of F(x)(or p(y|z)) are given in Zeng (2003), Zeng (2004), and Spalding, Tsui
and Zeng (2006). These aforementioned examples well accommodate the three types of well-
documented noise in financial literature: discrete noise, clustering noise, and non-clustering
noise. Especially, Spalding et. at. (2006) applied a simple model of Zeng (2003) with
new measures of trading noises and trading cost to further support the important findings
of Christie and Schultz (1994), Christie, Harris and Schultz (1994) and Barclay, Christie,
Harris, Kandel and Schultz (1999) 2.

2.3 Representation II: Filtering with Counting Process Observa-
tions

Alternatively, we can view the transaction prices in the levels of price due to price discrete-
ness. That is, we can view the prices as a collection of counting processes in the following
form:

Nl(fqt5 Ai(s, X(s))ds)
No(fy Aa(s, X (s))ds) (3)
Nl Mnls, X (5))ds)

where Yy (t) = Nk(f(f Ak(s, X (s))ds) is the counting process recording the cumulative number
of trades that have occurred at the kth price level (denoted by y) up to time t.

The following four mild assumptions are invoked so that the probability of simultaneous
trades is zero, and more importantly, this representation is equivalent to the previous one
in distribution. The equivalence ensures that the statistical analysis based on the latter
specification can be applied to the former and the equivalence is proven in Zeng (2005).

Assumption 2. {N;}7_, are unit Poisson processes under P.

Assumption 3. X, Ni, N>, ..., N, are independent under P.

2The results of Christie and Schultz (1994) led to regulatory investigations, legal activities, and numerous
academic studies. This culminated with the Securities and Exchange Commission imposing a series of market
reforms in NASDAQ. Barclay et. al. (1999) documented effects of the NASDAQ market reforms.



Assumption 4. The intensity at price level k, \p(t,x) = a(t,x)p(yx|z), where a(t,z) is the
total trading intensity at time t with v = X (t) and p(yx|x) is the transition probability from
z to yy, the kth price level. Furthermore, |yr — Rlz, 37]| < C1, where Rz, ﬁ] rounds x to
the closest % and the positive C is achievable, namely, the support of the possible y given
x is from Rlz, ;] — Cy to Rlz, 7] + Ci.

Remark 1. Note that p(yg|z) is the same as p(y|x) for F(x) of Representation I. The
structure of Ay implies that a(¢, X (¢)) specifies when the trade might occur while p(yx|z)
specifies at which price level the trade might occur. Since the impact of trading noise in
price formation is limited, it is reasonable to assume the price is in a bounded range of the
intrinsic value.

Assumption 5. The total intensity, a(t,x), is uniformly bounded above; i.e., there exists a
constant, Cy, such that a(t,z) < Cy for allt > 0 and x.

Remark 2. Under this representation, X (¢) becomes the signal process, which cannot be
observed directly, and Y (¢) becomes the observation process, which is corrupted by noise.
Hence, (X,Y) is framed as a filtering problem with counting process observations.

For readers not familiar with counting processes, note that Y (t) = Ng( f(f Ak (s, X (s8))ds)
has a Poisson distribution with parameter fot Ak (s, X (s))ds when the path of X, {X(s):0 <
s < t}, is given. Actually, Y} is a random time-change of the unit Poisson process Ny. Also,
although Ny, ..., N, are independent unit Poisson processes, Y7, ..., Y, are not independent,
because their intensity functions all depends on X.

Under Representation II, with Assumptions 1 - 5, the filtering equations and a consistent
computational algorithm are developed in Zeng (2003). We review them in Section 4.4 in
order to compute the hedging strategy under partial information.

2.4 An Integral Form of Price

To solve the option pricing and hedging problem, the differential or integral equation (SDE)
of the most recent price is needed. However, the previous two representations do not provide
such a form for the price. We fill this hole with the two-step construction below.

e Step 1 : We define a random counting measure. Let U = {0, ﬁ, %, -+ -} be all the possi-
ble price levels, and u = 2 be a generic point in U. Define m(A,t) = Y, ., Yuu(t), for A €
U. Then, m(A,t) counts the cumulative number of trades whose price levels are in A up to
time ¢. Note that m is a random counting measure.

A random measure is fully characterized by its compensator. To describe the compen-
sator, we denote n as the usual counting measure on U with the following two proper-
ties: For A € U, n(A) = [, Lan(du) (i.e. n(A) counts the number of elements in A) and
[ Fwn(du) =3, c4 f(u). Then, v,,(A,t), the compensator of m(A, t) with respect to F;*,

can be written as

(A1) = / / p(ul X (s))a(s, X (5))n(du)ds
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- Z/ p(u|X(s))a(s, X(s))ds
u€eA 0
and
Ym(du, dt) = p(u| Xe)a(t, Xo)n(du)dt.

We are in the position to define the integral form needed.
e Step 2 : Let Y(¢) be the price of the most recent transaction at or before time ¢. Then,

Y(t)=Y(0)+ /[Ot] U(u —Y(s—))m(du,ds). (4)

Observe that m(du,ds) is zero most of the time and becomes one only at trading time t;
with uw = Y'(¢;), the trading price. The above expression is but a telescoping sum: Y (t) =

Y(0) + >, (Y(t) = Y(ta-1)).
Correspondingly, there is a differential form for Y (¢):

4y (1) = /U (u — Y (t—))m(du, dt). (5)

To help explain the above differential equation, if there is a price change from Y (t—) to u
which occurs at time ¢, then Y (t) — Y (t—) = (u — Y (t—)) implying Y (¢) = u.

With the above evolution of price, we study option pricing and hedging for the FM
model through the local risk minimizing criterion in Section 4. But, we first review risk
minimization in Section 3.

3 A Brief Review of Risk Minimization

The general theory of the risk minimization approach was first developed in Féllmer and Son-
dermann (1986) and then extended to the local risk minimization in Follmer and Schweizer
(1991). This brief review is based on these two papers.

3.1 Setup and Mean Self-Financing Strategies

Suppose that the stock price, Y = (Y;)o<i<r, is a continuous square-integrable semimartin-
gale on some filtered probability space (2, G, (Gt)o<t<r, P). Y has the Doob-Meyer decom-
position: Y = Yy + M + A where M is a local martingale and A is a predictable process with
finite variation paths. Suppose that the random variable H € £2(2, G, P) is a contingent
claim at time 7. A hedging strategy against this claim is a portfolio strategy consisting
of the stock Y and a riskless bond D = 1. Define & and (; as the number of shares in
stock and bond, respectively, held at time t. & is assumed to be predictable (i.e. roughly,
Gi_-measurable) and (; to be adapted (i.e. G;-measurable). Then, V; = &Y, + (; is the value



of the portfolio at time ¢ and C; =V, — f(f &,dYy is the cost of the portfolio at time ¢ with
respect to the strategy (&, (). With the following integrability condition

B [ g ([ el <o ©)

the process of stochastic integral in Cy is well-defined. Here, (Y') (or (V,Y)) is the conditional
(co-)quadratic variation (see Protter 2004).

A mean self-financing strategy (&, (;)o<i<7 is an admissible strategy whose C; is a martin-
gale(with Vi = H). Note that mean self-financing strategies include self-financing strategies
(i.e. Cy = Cy, a constant cost).

3.2 Complete Market Case

When the market is complete and has no arbitrage, the contingent claim, H, admits an Ito
representation. That is, there exists an adapted £ such that: H = Hy + fOT EHdY,. Then,
let £ :=¢&7 =V —¢&Y, and V, := Hy + fUT EHAY,, for 0 <t < T. In such a case, it is clear
that such a strategy is admissible and moreover, self-financing, that is, C; = Cr = H,.

Also in this standard case, no arbitrage is equivalent to the existence of the unique
equivalent martingale measure (EMM), P’ under which Y becomes a martingale. Then,
the above strategy is uniquely determined as follows: V; = E'[H|G;], and £# = d%’}?, the
Radon-Nikodym derivative of the conditional quadratic covariation of V' and Y with respect
to the conditional quadratic variation of Y.

3.3 Incomplete Market Case 1

In the ideal complete market, the hedging completely gets rid of the risk in a contingent
claim. It is no longer possible in an incomplete market. A common claim has an intrinsic
risk, the smallest possible risk. The problem is to find a strategy that decreases the extant
risk to the intrinsic part. Case I assumes that Y is already a martingale under P and Follmer
and Sondermann (1986) studies this problem.

Define the remaining risk among the admissible strategies at each time ¢t as E[(Cr —
C1)?|Gs]. Define the risk minimizing strategy at each time ¢ as the optimal strategy among
admissible strategies that minimizes the remaining risk at each time ¢. Then, the intrinsic
risk is the minimum remaining risk achieved by the risk minimization strategy.

Suppose Gr-measurable H has the unique Kunita- Watanabe decomposition under P,
T
H—%+/§wm+¢
0

where 7 is predictable and L* is a martingale orthogonal to Y. Then, the risk-minimizing
strategy is uniquely given by & = ¢ = dVY) - and ¢ =V =& with V, = E[H|G] =

dy)
Hy+ [yeldy, + LY.




3.4 Incomplete Market Case I1

Case II assumes that P itself is no longer a martingale measure and Féllmer and Schweizer
(1991) studies this general incomplete case, under which the risk minimizing strategy does not
exist. However, they proposed a local risk minimization criterion. A locally risk-minimizing
strategy is the one minimizing the remaining risk under all infinitesimal perturbations of
the strategy at time ¢. This definition is equivalent to the associated cost, C', of the locally
risk-minimizing strategy being a square-integrable martingale, orthogonal to M under P. In
another way, the existence of a locally risk-minimizing strategy is equivalent to H having
the Féllmer and Schweizer decomposition:

T
H:H0+/ efay, + L%
0

under P with Hy € £2%(€, Gy, P), where ¥ satisfies Equation(6) and L is a square-integrable
martingale orthogonal to M, the martingale part of Y in its Doob-Meyer decomposition.

To identify the above Follmer and Schweizer decomposition, the minimal martingale
measure provides an important tool. A martingale measure () is called minimal if Q = P
on Gy, and if any square-integrable P-martingale L that satisfies (L, M) = 0 remains a
martingale under ). Note that the minimal martingale measure preserves orthogonality,
namely, if (L, M) = 0 under P, then (L, X) = 0 under Q.

Under the above setup, they show that the minimal martingale measure and the locally
risk-minimizing strategy are uniquely determined. More importantly, define V; as V;, =

EQ[H|F;], and the optimal strategy is given by &7 = dc%’};) and ( =V — &Y.

4 Risk Minimization for the FM model

In this section, we use the methodology of Follmer and Schweizer (1991) to study the risk
minimizing hedging problem of the FM model described in Section 2. For the most recent
price process, we first obtain the Doob-Meyer decomposition, which helps to specify the
minimal martingale measure. Note that the FM model is not a continuous semimartingale
and the results reviewed in Section 3 are not obviously applicable if the price process has
jumps (as in the FM model). Lee and Protter (2008) shows that the results of the local risk
minimization still hold for a class of semimartingales allowing feedback jumps.

In the FM model, there are not only jumps, but also there is partial information. Namely,
the hedging is not based on F;*" = o((X,,Y,) : 0 < s < t), but based only on F} = o(Y, :
0 < s <t). Nevertheless, first under full information, we are able to adopt the argument in
Lee and Protter (2008) to prove the existence of the minimal martingale measure, and derive
the optimal hedging strategy. Then, we obtain the filtered hedging strategy under partial
information by taking the conditional expectation and develop a related filtering technique
for the computation of such hedging strategies.
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4.1 The Doob-Meyer Decomposition of the Price Process

To describe the Doob-Meyer decomposition, we first define a couple of functions which also
play an important role in the specification of the minimal martingale measure. Recall in
Assumption 4 that |y — R[z, 1;]| < Cy, where C is achievable. Let

0 (X(0),Y (1) = / (u— ¥ (t—))p(ul X (£))n(du)

M(R[X(t),21+C1) (7)

= > (u =Y (t=))p(ul X (1)).

j=M(RIX(t),37]=C1)

and

M(RIX (1), 2 )+C1) (8)

Then, ¢;(X(t), Y (t—)) and g2(X (), Y (t—)) are the first two conditional moments of Y'(t) —
Y (t—) given Y (t—) and X (¢) and if a trade occurred at time ¢t. We observe that

t—/ / u =Y (5=))*ym(du, ds)
_/0 [/U(u—Y(s ))2p(ul X (5))n(du)] a(s, X (s))ds (9)
_ /Ot 9s(X(5), Y(5—))a(s, X (s))dt.

Now, we can write the Doob-Meyer decomposition in a nice form. Recall that the most
recent price in the model of Section 2 in differential form is

dy; = /(u —Y(s—))m(du,ds)
U
where the compensator of m(du,ds) is v, (du,dt) = p(u|X;)a(t, Xi)n(du)dt. Denote the

compensated m(du,ds) as m(du,ds) = m(du,ds) — v,(ds,ds). Hence, the Doob-Meyer
Decomposition can be written as Y; = M; + A; where

/ / =Y (s—))i(du, ds), (10)

11



is the local martingale and

(11)

(X(),Y(s-)
02(X(5), Y (7))

is the predictable Finite Variation (FV) part. The above equation provides a key component
in identifying the Radon-Nikodym density that determines the minimal martingale measure.

(Y)s.

4.2 Minimal Martingale Measure

One more assumption is needed.

Assumption 6. For allt € [0,T], g2(X(t),Y(t—)) < C5 and

92(X(1), Y (t=)) — 2 (X(8), Y (1=)) (Y (#) = Y (t=)) > 0. (12)

Remark 3. One simple sufficient condition for Assumption 6 is that g, (X (¢),Y (t—)) = 0.
That is, the expected difference between Y (¢) and Y (t—) is zero given Y (t—) and X (¢) and
if a trade occurred at time t.

Below, we present a theorem on the minimal martingale measure.

Theorem 1. Under Assumptions 1 - 6, define Z as

= - t gl(X(S)7Y(S_)) u — S— m z S
Z=1 /OZS‘ng(s),Y(s—))/U( Ys=))m{dz, ds).

Then, Z; > 0 and E(Zy) =1 for all t € [0,T]. Furthermore, Q) defined by % = Zp is the
mainimal martingale measure of Y.

Proof. The proof consists of three parts. The first one shows that Z defines an equivalent
probability measure, the second part shows the measure () defined by Z is a martingale
measure, and the third part shows () has the minimal property.

e Step 1 : For the first part, it suffices to show that Z; > 0 and E(Z;) = 1 for all .
Notice that

t
Zt:1+/ 7, dK,,
0

12



where

_ [ 9(X(5),Y(s0))
= /092(X(5)’Y(5_))

Using the Stochastic Exponential formula, we can solve it for Z as

/(u —Y(s—))m(du,ds). (13)
U

LK) T (1 + AK,) exp(—AK,).

2
0<s<t

Zy = exp(K; —

To obtain Z; > 0, we should show that (1 + AK;) > 0 for all ¢t € (0,7, which is equivalent

to
G XY )
@y T T =0

for all t € (0,7]. Assumption 6 ensures the above condition is always satisfied. Therefore
Zy > 0.

Since Z is a P-local martingale and Z, = 1, it suffices to show that FE([Z];) < oo to
obtain E(Z;) = 1 for all ¢, because Z becomes a martingale if F([Z];) < oo, where [Z]; is
the quadratic variation process of Z. We have

2]} :E/Ot 7% d[K] _E/ 72 <@) /(u—Y(s—))Qm(du,ds)

<p [z (9—) o als, X(is < [ Bz

g2 0

for some large enough C* by Assumption 6 and the boundedness of %, a(t, X(t)) and gs.
Further by the same boundedness and from the direct evaluation of the expected value the
under Poisson distribution, we obtain

E{Z?} < Eexp(2K,) < C**

for some constant C**.

e Step 2 : To show () is a martingale measure, we apply the Girsanov-Meyer Theorem
(Theorem 3. 36 on page 133 of Protter (2004)). Then, it suffices to show that the FV part
=— fo 7= d{M,Z)s, where M is the local martingale in the Doob-Meyer decomposition

of Y and (M, Z >t is the conditional quadratic co-variation process (or angle bracket process)

13



of M and Z. It is true as shown below:
- [ aus. 2.
[ el [ [ et
[ 72Oy v yatasan
= [N (o) X )t X5
= [ XY (5 X(6)ds = A

For the second equality, we apply a well-known property of the angle bracket process: Sup-
pose that fi(t,u,w) and fo(t, u,w) are EX’Y—predictable functions. Then,

</0./Uf1(s,u,w (du, ds) //fgsuw (du ds)>

(14)
_ /0 t /U £1(t, 5,0) fo (1, 5, )y (dt, ds).

e Step 3 : We show that the measure () satisfies the minimal condition. Let M’ be a
P-martingale such that (M’ M) = 0. Then, again by Girsanov-Meyer theorem, we should
show that M’ is a @Q-martingale, which is true since

Note that the conditional quadratic co-variation is calculated under P. O

Having established a minimal martingale measure (), we study the change of the Brownian
motion and the random measure under (). The next theorem states that the Brownian
motion remains invariant under (), but the random measure has a new compensator, which
is explicitly provided.

Theorem 2. Under the minimal martingale measure ) defined in Theorem 1, Bf = B; and

14



the compensator of m*(du, dt) is given by
Yo (du, dt)
(1~ 2LV )
2(X (1), Y(t—))
(1 0¥ ()
92X (1), Y (1))

Remark 4. Assumption 6 ensures the nonnegativity of the compensator of m*.
Since the proof contains some technical concepts of random measure, those concepts and
the proof are provided in Appendix A.

(= Y (t=) )y (s, ) (15)

(=Y (=) ) p(ul X () (du)a( X (1), t)dt.

4.3 Local Risk Minimization under Full Information

Recall the filtrations F;°" = o(X,, Y, : 0 < 5 < t), the full information, and F) = o(Y, :
0 < s <t), the partial information observed by agents. Let H be a European style contingent
claim of Y and define H; = EQ[H (Y7)|F*Y]. Note that X is Markovian, but Y itself is not.
Nevertheless, we have the lemma below with its proof in Appendix A.

Lemma 1. The triple (t, X,Y") forms a three-dimensional Markov process under both P and
Q.

Hence,
H, = E°[H(Yr)|F "] = E9[H(Y1)|X,, Y] = f(t, X, Y7)

for some function f.

The following theorem presents the PDE for f(¢,z,y), the martingale representation for
H, and the local risk-minimizing hedging strategy under the full information.

Theorem 3. The integro-differential equation for f(t,x,y) € CY*? where v = X(s) and
y=Y(s—) is

0 =fi(t,2,y) + p(2) fult, 2, y) + 0%(2) fuu(t, 2,)

2
16)
91(y,) <
+a(t,x K(u;t, x, 1-— U — u|T
() 3 D)1= e =) Jplule)
where k(u;t, x,y) = f(t,x,u) — f(t,x,y) with the terminal condition:
(T, X(T),Y(T)) = HY(T)). (17)
Moreover, the martingale representation for Hy is:
H, H0+/ fu(s, X5, Yy )o(X,)dB
(18)

// (s 5, X, Yo )" (du, ds) — e (du, ds)].
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Let g3(X(s),Y (s—)) = [, w(u; s, Xy, Yo ) (u — Yo )p(u| X (s))n(du) and let

oy dHY) | (XY (=)
R SRR R} 19

Then, the local risk minimizing hedging strategy under full information is given by €Y and
CX,Y = H — fX’YY.

Proof. Assume f(t,z,y) isin C1?2. Recall X(t) is a diffusion by Assumption 1. Ito’s formula
gives

f(ta Xta Yt)

=1(0, Xo, Y T 7X87}/S— Xs st ) 7X87Y;— n*(d 7d
£(0, m@+Af@ Jo(X,) +A[ﬁw3 Jiiv* (du, ds)
b [ (X0 Vi) Rl X Yo DX) 5 ol X Vi) (X)) s (20)
0

t
+/ //{(U;S,XS,}/;_)”ym*(du,dS)
0o Ju

where m*(dz, dt) = m*(du, dt) — v~ (dz, ds), the compensated m*(du, dt) under Q). Recall
Ym+ (du, dt) in Equation(15). So, the last term of the above equation is a term of ds. Since
f(t, Xy, Y;) is a martingale under ), the ds term must vanish. With the last term merging into
ds, we obtain the integro-differential equation of Equation(16) for f(¢,x,y) where z = X (s)
and y = Y (s—). Note that in Equation(17) we have used Y (T') = Y(7T'—) a.s. Furthermore,
we obtain the martingale representation for H; as in Equation(18).

Follmer and Schweizer (1991) showed that the hedging strategy under full information
XY can be obtained as the ftx ’Y—predictable density of the conditional quadratic covariation
of H and Y with respect to the conditional quadratic variation of Y. Namely,

gor - ALY (21)
a(y’)
where the angle brackets are calculated under P and with respect to .EX’Y.
The above result is not obviously applicable when the FM model has jumps. The key
point to note is that the minimal martingale measure preserves orthogonality when passing
from P to ), whereas the above result rests on the converse implication. Fortunately, the

above result still hold for H? semimartingales which includes the FM model (see Equation
(11) in Section 4 of Lee and Song 2007).

Next, we compute (H,Y). We will use the bilinearity of the angle brackets and the well
known property in Equation(14).
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Note that

)= [ s XY Ve
= [ [ s, X Yo Yo plal X ntetats, X (s (22
= [ go(X (), Y (5= )as, X ().

Recall d(Y'); = g2(X(t), Y (t—))a(t, X (t))dt. So the hedging strategy under full information

is given by
gX,Y _ 93(X(t)ay(t_)).
' 92(X (1), Y (t=))

Observe that the above §tX Y can be viewed as an infinitesimal projection of AH, on AY;. O

(23)

4.4 Filtered Local Risk Minimization with Partial Information

We now turn to a more realistic partial information case where the hedger only observes the
prices at trading times, namely, FY, excluding the continuous path of the intrinsic value
process of the asset.

With the partial information, one way to produce a reasonable hedging strategy is to
project the optimal strategy of Section 4.3 on the space spanned by the partial information.
Namely, we propose to use the conditional expectation of the optimal strategy under full
information given the observed trading prices.

Since the strategy is predictable, it is defined for time t—. Let

Y _ pQ 93(X(1),Y(t—)) Y
A ORI
HY = E9[H, | FY] = E9[f(t. X(1). Y ()| ]

and
Gl=H —& Y, .

Hence, the hedging strategy under partial information is given by (¢¥,¢Y).

In the next two subsections, we employ the filtering technique developed in Zeng (2003) to
develop the computation of the above hedging strategy under Q. For such a connection with
filtering, we call our hedge strategy a "filtered locally risk-minimizing hedging strategy”.
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4.4.1 The Filtering Equation under Q

The filtering technique enables us to compute the conditional distribution of X (t) given FY
as well as that of X (¢) given FY . Note that the filtering equation derived in Zeng (2003) is
under P, not (), and hence, is not suitable for computing the filtered locally risk-minimizing
hedging strategy. However, the technique in Zeng (2003) can be used to derive the related
filtering equation under Q).

The filtering equation under @ is to be derived for Representation II as in Zeng (2003)
and we present Representation II under () as shown below:

Ni(fy M(s, X (), Y (s—))ds)

Py = | Vel dels X(5). Y (s=))ds) (24)

Na(f5 An(s, st), Y (s—))ds)

where )\, depends on Y, the most recent price given in Equation (4) under @). Precisely,

: (X (1), Y (1))
Mt (X(0),¥ 1)) = alt, X(0) (1= Sy o = Y 0) ol X)) (25)

Let 7; be the conditional distribution of X (¢) given .7-?7 under () and let
(1.6) = ECLFX O] = [ (o)

As long as we know the conditional distribution of X (¢) given FY or FY under Q, we
can compute

ECb(t, X (t),Y (t-))| 7] = /b(t%Y(t—))ﬁt(dﬂ«")

for any given function b(t, X (¢), Y (t—)). Then, we can compute the filtered hedging strategy
under partial information. The conditional distribution is characterized by the filtering
equation in the theorem below.

Theorem 4. Suppose that (X, 37) satisfies Assumptions 1 - 6 and Q) is the minimal martin-
gale measure defined in Theorem 1. Then, 7y is the unique measure-valued solution of the
normalized filtering equation

o (20
s /0 [m—ﬁ(f75—)]d(yk(5)_ﬁ(fj\lms)s)

k=1 7%0‘1675_)

fort >0 and f € D(A), the domain of generator A of X given by Equation (2), where A =
M (t, X (1), Y (t—)) given by Equation(25), and pr = p(yx|(X(t)) is the transition probability
from X (t) to yy.
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The proof of Theorem 4 employs the reference probability measure approach and is a
slight modification of that of Theorem 3.1 in Zeng (2003). Thus the proof is omitted.
Remark 5. Equation (26) can be separated in two parts. The first is called the propaga-
tion equation, describing the evolution without trades and the second is called the updating
equation, describing the update when a trade occurs. Let tq,1s,..., be the trading times.
The propagation equation has no random component and is written as

m

~

#(ftin=) =700+ [ [FALS) = Y () — 7L )70k ) |ds. @D

k=1

This implies that when there are no trades, the posterior evolves deterministically.
Assuming the price at time t¢;,;, occurs at the jth price level, the updating equation is

F(f Ay tir—)
(A, tig1—)

It is random because the price level k, which is the observation, is random.

7(f tin) = (28)

4.4.2 The Computation of the Approximate Hedging Strategies

The filtering equation is infinite-dimensional and to actually compute the conditional distri-
bution, we develop the approximate consistent numerical scheme below.

Suppose the state space of X is discretized with € as the length between lattices. Then,
X., an approximation for X, can be constructed via a Markov chain approximation. Namely,
X. = X, which means X, converges weakly to X in the Skorohod topology as ¢ — 0. Define
under P,

Ni(fy M(s, X(s))ds)

No(J, )\2(3., X(s))ds) (20)
t :

No(fy An(s, Xc(s))ds)

Theorem 5. Suppose that (X, 37) is on the probability space (2, F, P) with Assumptions 1 -
6 and Q is the minimal martingale measure in Theorem 1. Suppose that for e > 0, (X, }76) is
on (e, Fe, P.), Assumptions 1 - 6 also hold for (X, 376), and Q. is the corresponding minimal
martingale. If X, = X as e — 0, then

(i) Y-=Y ase —0; and

(ii)EQS[F(XE(t)ﬂftﬁ] = EQ[F(X(t)|FY] as € — 0 for function F in the domain of the
generator A.

The proof of the theorem is a slight modification of that of Theorem 4.1 in Zeng (2003).
Thus the proof is omitted also.

Remark 6. Let 7. be the conditional distribution of X (t) given ffe under ().. Theorem
5 implies that 7., = 7, and further that

E9[b(t, Xe(t), Ye(t=))|F] = B, X (1), Y (t-))| 7]
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for any given function b(¢, X (), Y (t—)). Applying the Markov chain approximation method,
a consistent recursive algorithm can be constructed to compute 7. ; as in Zeng (2003). Then,
we can compute the approximate filtered hedging strategy under partial information.

5 Conclusion

In summary, we apply the local risk minimization approach to derive the explicit filtered
hedging strategies of the FM model with partial information. The model incorporates the
two stylized features of ultra-high frequency data: random trading times and market mi-
crostructure noise. We develop the computation of the derived hedging strategy through a
nonlinear filtering technique.

There are several interesting possibilities for future works. The first one is to prove the
optimality of the filtered locally risk-minimizing hedging strategy under partial information.
However, it is a challenging task because the projection technique used for the martingale
case fails in the semimartingale situation. The second one is to overcome the difficulty in the
computation of the hedging and option pricing. Then, we will be able to compare the filtered
locally risk-minimizing hedging with the usual Black-Scholes hedging and option pricing, and
to understand how the trading intensity and the magnitude of market microstructure noise
affect hedging and option pricing, which is an important practical problem. Third, it would
be interesting to apply other alternative hedging approaches for incomplete markets such as
the minimum entropy martingale measure approach, mean-variance or utility maximization
approaches, to compare the different hedging strategies, and to evaluate them.

A Related Proofs and a Lemma

A.1 The Proof of Lemma 1

Since a Markov process is characterized by its infinitesimal generator, A, (see Chapter 4
of Ethier and Kurtz 1986), it suffices to calculate the generater for (¢, X(¢),Y(¢)). If the
generator exists then (¢, X (¢),Y(t)) is an inhomogeneous Markov process. Recall that for
x € R,y € U, the generator is defined as
Elf(t X(t Y(t t, X(t)=z,Y() =yl — f(t
Afoy) =t P 5 X (9. Y+ )6 X(0) = 2.V () =) = Flt.9)

sl0 S

Using Equation (16) obtained from It6’s formula and with some computation, we obtain
the generator under P as

2

Af(t,z,y) = %f(t, T,y) + u(ﬂc)%f(t, T,y) + %%f(t, z,Y)

talt, z) / [F(t,2,0) — £(t,2, )] plulz)n(du),
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and the generator under () as

2

9 tttary) + 22 f(t )

)
—f(t, 2, y) + p(x )a:c 5 92

Af(t,x,y) = pr

91(7,y)
+af(t, :v)/U [f(t, @,u) — f(t,z,y)] [1 - m(u —y)|p(ulz)n(du).

Therefore, (¢, X(t),Y(t)) is an inhomogeneous Markov process under P and ). We
also observe that when a(f,z) = a(x) independent of time ¢, Af(X(t),Y (f)) exists and
(X (t),Y(t)) becomes a homogeneous Markov process.

A.2 Some Technical Definitions and a Lemma

Let U be the mark space which can be R or a countable set like {0, - A M, -+ -} used in this
paper. Suppose that p(w;-,-) is a random counting measure on U x [0, 7T such that u(A,t)
counts the number of jumps in A up to time ¢t where A is a subset of U. Then, for a function
W:QxUx|[0,T] - R,

t
| [ W wsniduas) ZWw Un(), Tul@)) 1,120
0 U

when 7;, is n-th jump time.

To prove the Theorem 2, we need the following lemma which is a part of Theorem 3.17
of Chapter I1I(page 157), Jacod and Shiryaev (2002) and a version of the Girsanov theorem
for random measure. We first provide some technical definitions. Define M) = M (W) =
E(W % 1) as the p051t1ve measure for all measurable nonnegative functlons W where
W floo = f[OOO Jo W(w;u, s)u(w; du, ds). By the predictable o-field P, we mean a o-field
on Q x R such that P = P ® B where B is a Borel o-field. There is a notion of conditional
expectation relative to M f with respect to the predictable o-field P: for every nonnegative
measurable function W, let W' = M7 (W|P) denote the M}-a.s. unique P-measurable
function such that M (WU) = MEP(W'U) for all nonnegative P-measurable U. For more
details and examples, we refer to Chapter 2 and 3 of Jacod and Shiryaev (2002).

Lemma 2. Assume that Q < P and let Z be the density process. Let u = p(w;du, dt) be an
integer-valued random measure on U x RT, and let v = U(Eu;dt,dx) be the P-compensator
of w. Let'Y be any nonnegative version of Mf(Zi_l{me}]P) and V' be a version of the Q)

compensator of p. Then v'(w;dt,dx) =Y (w;t, z)v(w;dt,dx) P — a.s.

A.3 The Proof of Theorem 2

Since (Z, B) = 0, the Girsanov-Meyer Theorem gives B} = B; under (). This is the straight-
forward part. We use the above technical lemma to derive the change of the random measure
under Q).
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As mentioned in Section 4.1, the compensator of m(du,ds) under the original mea-
sure P is v, (du, dt) = p(u|Xy)a(t, X;)n(du)dt. Therefore, by the lemma, it suffices to find
My (F 1z >0 |P).

Recall

t
Zt:1+/ 7, dK,,
0

where K is given by Equation (13). Therefore,

Zy B 4
Z. ARl Ry

Following an argument similar to that given in the proof of Theorem 4 of Lee and Song
(2007), we can easily see that

M£(£_1m>o}\75)t = (1 — gg(i(t), igt—;; (u— Y(t—)).

This proves the theorem by Lemma 2.
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