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1 Introduction  
Since the seminal paper of Duffie and Kan (1996), most empirical research on the term 
structure of interest rates have focused on a class of linear models, generally referred to 
as “affine term structure models”. In this class of models, the yield on a τ-period bond 
(free of default risk), iτ,t, can be obtained as a linear function of some underlying state 
variables, Xt  

  tt XBAi /
, τττ +=  

where the coefficients Aτ and Bτ are determined by a system of differential equations. 
Since these models produce such a closed-form solution for the entire yield curve, they 
become very tractable in empirical applications. Piazzesi (2003) and Dai and Singleton 
(2003) provide excellent surveys of affine term structure models.  

Non-linearity can be introduced into dynamic models of the term structure of interest 
rates either by generalizing the affine specification to a quadratic form along the line of 
Ahn, Dittmar, and Gallant (2002), or by including a Poisson jump component as an 
additional state variable as in Ahn and Thompson (1998), Das (2002) or Piazzesi (2005) 
among others. Another approach is to incorporate Markov regime shifts into an otherwise 
standard affine model. Bansal and Zhou (2002), Wu and Zeng (2005), Dai, Singleton and 
Yang (2007) are some recent examples. These non-linear models not only are more 
general than models without regime shifts, but also retain much of the tractability of the 
standard affine models. Moreover, there are natural economic interpretations of regime 
shifts. For example, much documented empirical evidence shows that the aggregate 
economy experiences recurrent shifts between distinct regimes of the business cycle. 
Such regimes shifts ought to be reflected into the dynamics of asset prices, and bond 
yields in particular. Another motivation for the regime-switching models is the impact of 
the monetary policy on interest rates. Most central banks in the world have now used 
some short-term interest rates as their policy instruments. A notable feature of the 
monetary policy behavior is that changes in the policy rate’s target of the same direction 
are usually very persistent. For example, in the U.S. the Fed decreased its interest rate 
target 12 times consecutively between January 2001 and November 2002, and since June 
2003 there have been 11 interest rate hikes by the Fed without a single decrease. 
Presumably such shifts in the overall monetary policy stance (from accommodative to 
tightening or vice versa) have more important effects on interest rates than a single 
interest rate change does. A model with regime shifts is the most convenient tool to 
capture such policy behavior.  

In this chapter we survey some recent studies of dynamic models of the term structure 
of interest rates that incorporate Markov regimes shifts. In section 2 we summarize an 
early literature of regime-switching models that mainly focus on the short-term interest 
rate. The success of these models has since motivated fully-fledged dynamic asset pricing 
models for the whole yield curve under regime-switching. The next two sections attempt 
to summarize these recent studies. Section 3 considers regime-switching models in a 
discrete-time framework while section 4 contains continuous-time models. Section 5 
provides some concluding remarks.  
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2 Regime-switching and Short-term Interest Rate 

The misspecification of existing single-regime models of short-term interest rate has 
been widely discussed. One potential description for this mis-specified phenomenon is 
that the structural form of conditional means and variances is held fixed over the sample 
period. Ultimately, all such single-regime models, assuming that the short rate is 
mean-reverting, involve the estimation of a set of parameters that are assumed to be fixed 
throughout the entire sample period. However, the later discussed literature about the 
short-term interest rate in favor of a regime-switching model since it is more flexible and 
constitutes an attractive line in describing the ‘style fact’ of the short-term interest rate 
process. The regime-switching model is more attractive owing to its feature of 
incorporating significant nonlinearity in contract to the traditional linear property of the 
speed of revision and long-run mean inherent in most single-regime models. The 
regime-switching model is flexible enough to incorporate a different speed of revision to 
a different long-run mean at different times. The parameters in regime-switching model 
differing in different regime can account for the possibility that the short rate DGP may 
undergo a finite number of changes over sample period, which can capture the stochastic 
behavior of time-varying short-term interest rates. Since the regimes are never observed 
and the parameters are unknown and have to be estimated, probabilistic statements can be 
made about the relative likelihood of their occurrence, conditional on an information set. 

 The period of unprecedented interest rate volatility always coincides with changes in 
business cycle caused by various economic or non-economic shocks. In general, changes 
in monetary or fiscal policies result in a business cycle fluctuation, which may cause 
interest rates to behave quite differently in different time periods. The real world has also 
experienced various shocks in the economic environment within past few decades. For 
examples, the 1973 OAPEC oil crisis, the October 1987 stock market crash, 1997 Asian 
financial crisis, 2000 dot com crash, 2001 911-event, 2007 subprime mortgage crisis… 
and so on.9

 Short-term interest rate models should capture two well-known properties of the 

 Since the stochastic behavior of short-term interest rates is well-described by 
regime-switching models, the earlier literature of regime-switching models applied to the 
interest rate process mainly focuses on the short-term interest rate. Those researches 
addressed on the earlier regime-switching models of the short-term interest rate follow 
the classical paper by Hamilton (1988). In this strand of literature, the models are mainly 
about the short-term interest rate alone, and long-term rates are usually related to the 
short-term rate via the expectation hypothesis. Examples include Lewis (1991), Cechetti, 
Lam and Mark (1993), Evans and Lewis (1995), Sola and Driffill (1994), Garcia and 
Perron (1996), Gary (1996), Bekaert, Hodrick and Marshall (2001), Ang and Bekaert 
(2002) among others. Most of the past literature has estimated the two-state 
regime-switching models, with the exception of Garcia and Perron (1996) and Bekaert, 
Hodrick and Marshall (2001) that focused mainly on the three-state models.  

 

2.1 Short-term interest rate models 

                                                 
9 OAPEC is an abbreviation for Organization of Arab Petroleum Exporting Countries consisting of the 
Arab members of OPEC plus Egypt and Syria. 
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short rate process, mean-revision and leptokurtic unconditional distribution. Two most 
common classes of short rate models are known as diffusion models and GARCH 
(general autoregressive conditional heteroskedasticity) models. 10

dWrdtrdr σβα ++= )(

 We review the 
diffusion model first in this paper and construct a regime-switching model later followed 
the framework of the diffusion model.  

 In continuous time or diffusion models, the short term interest rate is usually 
described as based on the Brownian motion. The dynamics of the short rate is thus 
expressed by the stochastic differential equation as the following framework. 

                                     (1) 

where dW  is the increment from a standard Brownian motion.  

This stochastic differential equation is usually transferred to an autoregressive (AR) 
model for an estimation purpose.11

ttt rr εβα ++= −1

 

                                         (2) 

where 0]/[ 1 =Φ −ttE ε  and γσε 2
1

2
1

2 ]/[ −− =Φ ttt rE . 1−Φ t  is the agents’ information set at 
time t-1. From this equation, mean revision and leptokurtosis can be captured by setting 

0<β  and 0>γ  (conditional heteroskedasticity), respectively. 

 

2.2 Regime-switching 
 Regime-switching can be viewed as the state changes in a finite Markov chain. 

For a general model considered in Gray (1996), we specify a special case that allows the 
short rate regime-switching setting held with regime-switching mean and variance. 

ttsst rr
tt

εβα ++= −1  ,     ),0(~ 2
tst N σε                (3) 

where ts  is the unobserved state variable presumed to follow a two-state Markov chain 
with transition probability, ijp . 

tsβ  is the parameter for the measurement of the speed 
of revision to long-run mean in state ts . The error term, tε , follows a normal 
distribution with 0 mean and a standard deviation of 

tsσ  in state ts .  

Equation (3) is thought to follow a regime-switching framework by quasi-maximum 
likelihood as described in Hamilton (1989). The testable scheme is expressed as follows. 
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The evolution of the unobservable state variable is assumed to follow a two-state 
first-order Markov chain process satisfying 122211211 =+=+ pppp , where 

                                                 
10 Engle (1982) shows that a possible cause of the leptokurtosis in the unconditional distribution is 
conditional heteroskedasticity.     
11 See from Chan et al. (1992) and Gray (1996) for more detail. 
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)/Pr( 1 isjsp ttij === −  gives the probability that state i followed by state j.12

Quasi-Maximum Likelihood Estimation of parameters 

 The state 
in each time point determines which of the two normal densities is used to generate the 
model. For our case of short-term interest rate, it is assumed to switch between two 
regimes (different long-run mean and speed of revision) according to transition 
probabilities.  

 

There are various ways to estimate the regime-switching model.13 The estimation of 
the MS setting of equation (3) mainly follows Garcia and Perron (1996), which employs 
Hamilton’s (1989) Markov-switching estimation by quasi-maximum likelihood.14

Let 

  

)'V,1(x,Ry tttt ==  and 
tsδ = ),(

tt ss βα . Equation (3) can be expressed as:15

tstt t
xy εδ += '

 

            , ),0(~ 2
tst N σε  

This regime-switching model assumes that the variance is also shifting between regimes. 
ts  is the unobserved state variable presumed to follow a two-state Markov chain with 

transition probability, ijp . 

As usual, we use capital letters tX  and tY  to represent all the information 
available up to time t and θ  to denote the vector of the unknown population parameters. 

 i.e., '
t21t )x,...,x,x(X = , '

t21t )y,...,y,y(Y =  and ''
2

'
1 ),( θθθ = , where 

tX  is exogenous or predetermined and conditional on 1−ts , and ts  is independent of 

tX . The grouping parameter vector can be decomposed by '
2121211 ),,,,,( σσββααθ =  

and '
22112 ),( pp=θ .   

By denoting '
T21T )x,...,x,x(X~ = , '

T21T )y,...,y,y(Y~ = , and 
'

21 ),...,,(~
TT sssS = , the joint density of TY~  and TS~  is as:  
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The log likelihood function can thus be expressed as: 

∑∑
=
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=

×=
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tttTT xssfxsyfXSY

1
21

1
1 )],;/(ln[]),;/(ln[),~;~,~ln( θθθ  

                                                 
12 Markov property argues that the process of ts  depends on the past realizations only through 1−ts . 
13 see Kim and Nelson (1999) 
14 Garcia and Perron (1996) employs Hamilton’s (1989) regime-switching model to explicitly account for 
regime shifts in an autoregressive model with three-state regime-switching mean and variance. 
15 For simplicity, the following analysis is based only on one industry. We thus omit the symbol i. 
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    If the state is known, the parameter vector 2θ  would be irrelevant and the log 
likelihood function would be maximized with respect to 1θ . 

 ∑
= ∂
∂

=
∂

∂ T

t

tttTTT xsyfXSYf
1 1

1

1

)],;/(ln[)],~;~,~(ln[
θ

θ
θ

θ  

 

Now, let’s introduce the estimation produces as the following way.  
 

Filter probability 

    We assume that θ is already observed.16

γ=
−+−

−
==

)1()1(
1)1(

2211

22

pp
psp t

 Based on Hamilton (1994), the derivation 
begins with the unconditional probability of the state of the first observation.  

 , and consequently γ−== 1)2s(p t  

 

Given 1tY − , the joint probability of 1−ts  and ts  is: 

)X;Ys(p)ss(p
)X;Ys(p)X;Y,ss(p)X;Ys,s(p

1t1t1t1tt

1t1t1t1t1t1ttt1t1tt
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−−−−−−−−

=
×=

          (4) 

where the first equality is given by Bayes’ theorem and the second one is by the 
independence principle of the Markov chain. Since the transition probability )s/s(p 1tt −  
and the filter probability at time t-1, )X;Ys(p 1t1t1t −−− , are both known at time t, it is not 
difficult to calculate )X;Ys,s(p t1t1tt −−  in Equation (4).  

    Summing up 1−ts  to get the conditional marginal distribution of ts : 

 

 )X;Ys,s(p)X;Ys(p t1t1tt
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=      (5) 

 

The joint probability of ty  and tS  at time t is then calculated as:17

)X;Ys(p)X;Y,sy(f)X;Ys,y(p 1t1tt1t1tttt1ttt −−−−− ×=

 

 

     (6) 

 
                                                 
16 The following derivations are mainly from Shen (1994). 
17 f(.) and p(.) denote the continuous and discrete density function, respectively. 
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The first term on the right hand side is the sample likelihood function and the second 
term is from Equation (5), so Equation (6) can be calculated. Therefore, the filter 
inference about the probable regime at time t is given by: 

∑
=
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=

=
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Smoothed probability 
The derivation of filter probability utilizes the information up to time t. Alternatively, 

we can use the full sample of ex post available information to draw the inference. It is 
therefore more efficient in the sense that all the information up to time T is utilized 
instead of t. Similarly, the smoothed probability of the first observation has to be derived. 
Consider the joint probability of ty , ts  and 1s : 
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 (7) 

where the first equality is given by Bayes’ theorem and the second one is by the Bayes’ 
theorem and independence principle of Markov chain. The first term on the right hand 
side of Equation (7) is the sample likelihood function. The second term can be derived 
by: 
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and the third term is the filter probability at time t-1. These terms are all known at time t 
and can be used to calculate Equation (7). 
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    The joint probability of ts  and 1s  is thus given by: 

)X;Yy(p
)X;Ys,s,y(p

)X;Ys,s(P
t1tt

t1t1tt
tt1t
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The numerator is from Equation (7) and the denominator can be derived by 
summing up ts and 1s  of Equation (7). The conditional marginal probability of 1s  is 
then given by summing up ts : 
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and this is the smoothed probability of the first observation at time t. Similarly, the 
smoothed probability at time t+1 can be obtained by:  
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Summing up 1+ts  to get the smoothed probability of the first observation at time 
t+1 yields: 
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By repeating the above steps, we are able to get the smoothed probability of the first 
observation at time T: 
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Similarly, the smoothed probability of the ith observation at time T is given by: 

TtXYsspXYsp
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Estimation 
According to the smoothed probability derived in the previous section, we can say that 
the observations were generated from the first state with probability  

p(st = 1 | YT ;XT) and from the second state with probability p(st = 2 | YT ;XT). 
Hamilton (1994) shows the relevant conditions of the maximum likelihood estimates of 
the 

tsφ  are: 
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Equation (8) implies that jφ̂  satisfies a weighted OLS orthogonality condition where 
each observation is weighted by the probability that it came from regime j. In particular, 

jφ̂ can be found from an OLS regression of )(* jyt  on )(* jxt : 
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where j denotes the present state and “ * “ is used to distinguish the terms of the weighted 
observations from the original observations.  

The estimate of σ2 in Equation (9) is just the combined sum of the squared residuals from 
these two regressions divided by T. 

 Hamilton (1994) also shows the maximum likelihood estimates for the transition 
probabilities: 
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which is essentially the number of times state i  followed by state j divided by the 
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number of times the process was in state i . 

 

3 Regime-switching Term Structure Models in Discreet Time  
Instead of focusing on a single interest rate, dynamic models of the term structure of 
interest rates attempt to model the joint movements of interest rates across the whole 
spectrum of maturities. The standard approach begins by first postulating a set of state 
variables, denoted as Xt, that underlie the dynamics of interest rates. Since under the 
no-arbitrage condition, a positive stochastic discount factor, denoted as Mt, exists and 
determines all bond prices, we can make further parametric assumptions about Mt, and 
the market price of risk in particular. Affine models of the term structure of interest rates 
are obtained after assuming both the short-term interest rate and the market price of risk 
are linear functions of Xt.18

),( 1+tt SSπ

  

The main advantage of this class of models is their tractability. Because the solution 
of the term structure of interest rates can be obtained as a linear function of the state 
variable Xt, which makes it easy to implement the models empirically. In this section, we 
generalize the standard affine models by incorporating Markov regime shifts in the 
dynamics of Xt and Mt. We can see that regime shifts not only make an otherwise 
standard model more flexible, they also introduce a new regime-switching risk premium 
in addition to the risk premiums due to shocks to the state variable Xt.  

 

3.1 State variables  
Let’s assume that there are K possible regimes, and let St denote the regime at time t. St 
follows a Markov-switching process with transition probability . For example, 
if sSt = , '

1 sSt =+ , ),( 1+tt SSπ  gives the probability of switching from regime s at time t 
to regime 's  at time t+1.  

Let Xt be an N × 1 vector that contains all other state variables. We assume that Xt 
follows a stationary mean-reverting process conditional on each regime, that is  

∑ −− +Φ+= ttttttt SXXSSX εµ ),()()( 11       (10)  

where 1+tε  is an N × 1 standard normal random variable, )( tSµ  and )( tSΦ  are 
regime-dependent N × 1 vector and N ×

 
N matrix respectively, and ∑ − ),( 1 tt SX  is an N 

× N diagonal matrix given by19

                                                 
18 In the case of stochastic volatility, affine models assume that the product of the market price of risk and the volatility 
term is a linear function of the state variable Xt. In other words, it is assumed that, under the risk-neutral probability 
measure, Xt follows a linear mean-reverting process 
19 Of course some regularity conditions need to be imposed on the parameters so that the term inside the square root is 
non-negative and the process is well defined. See Dai, Le and Singleton (2006) for more details. 
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Again the presence of St indicates that the coefficients in Σ are regime-dependent. We 
can collect all the 0, ( )i tSσ  (i =1, ..., N) in an N ×

 
N diagonal matrix, 

0
( )tS∑ , and 

collect all )(,1 ti Sσ  in an N ×
 
N matrix∑1

)( tS , with the ith column being i,1σ . In some 
models such as Dai, Singleton and Yang (2007), the regime-dependence of the 
parameters is specified slightly differently. Parameters such as µ, Φ depend on the regime 
at time 1,1 −− tSt , instead of the regime at time t. In other models such as those of Bansal 
and Zhou (2002) the parameters are assumed to depend on regime at time t, tS ,  as in 
the current paper.  

 

3.2 The stochastic discount factor  
Under fairly general condition (see, for example, Harrison and Kreps, 1979), the absence 
of arbitrage in financial markets implies that there exists a positive stochastic discount 
factor, Mt, such that the price of an asset at time t, Pt, is given by 

)( 11 ++= tttt XMEP  

where Xt+1 is the random payoff of this asset at time t + 1. In the case of bonds, if we let 
tnP , denote the price of an n-period zero-coupon bond at time t, we have  

)( 1,11, +−+= tntttn PMEP  

The model is completed by making specific assumptions about the stochastic discount 
factor, Mt, and the short-term interest rate. In particular, let  

1
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1 2
1

1
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+
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+ ==
ttttt

t
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t eeM
ελλλ

 

where ti  is the (one-period) short-term interest rate, tλ  is the market price of risk and 

1+tε  is the fundamental shocks that drive the state variables. Models differ in their 
assumptions about the market price of risk. For example, in Gaussian affine models, it is 
assumed that tλ  is a linear function of the state variable tX .  

Under regime shifts, we assume that  

11
'

11
'

1 ),(),(),(
2
1

+++++ ++= tttttttttttt SSSSSSim ελλλ      (11) 

where ),( 1
'

+ttt SSλ indicates that the market price of risk not only is a function of tX , 
but also depends on regime tS  and 1+tS . As pointed out by Dai and Singleton (2003), 
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the presence of 1+tS  has an important implication. If tλ  depends only on tS , it implies 
that a regime shift at time t + 1 will not have an impact on the stochastic discount factor, 

1+tM , or investors’ inter-temporal marginal rate of substitution. In order words, the 
regime-switching does not present a systematic risk to investors and hence will not be 
priced in the bond market. Assets are risky only because of the shock 1+tε . What the 
regime-witching will do, however, is to make risk premiums, or the expected excess 
return on risky assets, regime-dependent. The risk premiums will be time-varying not 
only because they depend on tX , but also because the parameters are regime-dependent. 
On the other hand, if tλ  depends on 1+tS  as well, there will be an additional risk 
premium associated with regime-switching. Because in this case, regime shifts have a 
direct impact on 1+tM  and will be regarded as a systematic risk just as the shock 1+tε .  

To obtain a closed-form solution for the term structure of interest rates, in general we 
need tλ  to satisfy  

1 0 1 1 1( , ) ( , ) ( , )t t t t t t t tt
S S S S S S Xλ λ+ + + += + Λ∑     (12) 

or equivalently  
1

1 0 1 1 1( , ) [ ( , ) ( , ) ]t t t t t t t tt
S S S S S S Xλ λ−

+ + + += + Λ∑    (13) 

where ),( 10 +tt SSλ is an N ×
 
1 vector of regime-dependent (on tS  and 1+tS ) constant, 

1( , )t tS S +Λ is a regime-dependent (on tS  and 1+tS ) N ×
 

N matrix. ∑t
is the 

conditional volatility term of the state variable Xt+1 as defined in (10).  

The last component of a dynamic model of the term structure of interest rates is a 
specification of the short-term interest rate, ti . Here, following the standard affine 
models, we assume that  

tttt XSBSAi )()( '
11 +=      (14) 

where )(1 tSA  and )(1 tSB  (an N ×
 
1 vector) are all regime-dependent parameters.  

 

3.3 Solving for the term structure of interest rates  

Again let tnP ,  being the price of a n-period zero-coupon bond at time t, we have  

)( 1,1,
1

+−
− += tn

m
ttn PeEP t  

We guess the solution to the bond price is, for some regime-dependent 
coefficients )( tn SA an )( tn SB ,  

ttntn XSBSA
tn eP )()(

,

'−−=
 
 

Substituting into the asset pricing equation above, we obtain  
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)( 11
'

111
1

''
' )()(2

1
)()( +−−+−

+ −−−−−−− ×= tnntn
ttttt

ttntn XSBSAi

t
XSBSA eeEe

ελλλ
    (15) 

Note that ),( 1+= tttt SSλλ  depends on tX , tS  and 1+tS . Since the regime-switching 
(from tS  to 1+tS ) probability is given by ),( 1+tt SSπ , (15) can be written as  

 

),|(),( 1
),(

1
)()( 11

1

'

++
−− ++

+

∑= tt
SS

S
tt

XSBSA SIeESSe ttt

t

ttntn ξπ      (16) 

 

where tI  is the information set at time t, and 1+tξ  is given by  

 

])()([]
2
1[),( 11

'
1111

''
11 ++−+−+++ −−+−−−= ttntntttttttt XSBSAiSS ελλλξ   (17) 

 

First note that 

 
),|(

2
1),|(

1
),( 1111

11 ),|( ++++
++

+

+ =
tttttt

ttt
SIVarSIE

tt
SS eSIeE

ξξξ  

 

which is approximately
 20

),|(
2
1),|(1),|( 11111

),( 11
+++++ ++≈++

tttttttt
SS SIVarSIESIeE ttt ξξξ

 

 

Substituting back into (16) and using the same approximation for ttntn XSBSAe )()( '−− , 

 
we have  

)],|(
2
1),|()[,()()( 11111

'

1

+++++ +=− ∑
+

tttttt
S

ttttntn SIVarSIESSXSBSA
t

ξξπ       (18)   

where 1+tξ  is given in (17). Equation (18) gives a system of difference equations for 
)( tn SA  and )( tn SB  that can be solved recursively, with the initial condition 

that 0)(0 =tSA , 0)( =tn SB  for all tS , and )(1 tSA and )(1 tSB  are given in (14).  

For example, if there are K possible regimes at each time t, (18) results 
in the following equations for )(sAn  and )(sBn  (s =1, 2, ..., K).  

                                                 
20 This is the approximation used in Bansal and Zhou (2002). 
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' 2
1 1 11

1( ) ( , )[( ( , )) ( ) ( )] ( )
2

K

n n n
s

B s s s s s B s B s B sπ
∗

∗ ∗ ∗ ∗
− −= Φ −Λ + +∑ ∑     (19) 

∑ ∑∑ ∗
−

∗
−

∗∗
−

∗
−

∗

∗

−−+=
0

'

0 1
'

10
'

11 )()(
2
1)),)()(()()[,()( sBsBsssBsAsssA n

K

s
nnnn λµπ  (20) 

Note that (19) and (20) define a system of 2 ×
 
K difference equations that 

must be solved jointly.  

Denote tni ,  as continuously compounding n-period interest rate, or the 
yield on the n-period bond. By definition,  

tnni
tn eP ,

,
−=  

Therefore the term structure of interest rates can be obtained as, for any 
maturity n and time t,  

t
tntn

ttntntn X
n
SB

n
SA

XSbSai
)()(

)()( '
, +=+=      (21) 

In this model we have to rely on log-linear approximation to get an analytical solution 
to the terms structure of interest rates as in Bansal and Zhou (2002) because of the 
assumptions that the coefficient Λ in (12) and the coefficient 1B  in (14) are 
regime-dependent. Exact solutions can be obtained if we assume that both Λ and 1B  do 
not depend on regimes. This is essentially the assumption made in Dai, Singleton and 
Yang (2007). In their models, the factor loading coefficient nB  in the solution of the 
term structure is also independent of regimes. More general models can be obtained by 
making the regime-switching probability time-varying. That is we can assume that the 
conditional probability ),( 1+tt SSπ  depends on tX  as in Dai, Singleton and Yang 
(2007). However, in this case, we need 1+tM  to be separable in 1+tS  and 1+tε and place 
some additional restrictions on tλ . This generalization can be more easily discussed in a 
continuous-time model below.  

 

4 Regime-switching Term Structure Models in Continuous Time  
Continuous-time models provide more analytical tractability. The affine term 

structure model of Duffie and Kan (1996) has been further studied in Dai and Singleton 
(2000) and generalized to “essentially affine” models in Duffie (2002) and “semi- affine ” 
models in Duarte (2004). Das (2002) and Checko and Das (2002) incorporated jumps in 
an otherwise standard affine model. Cheridito, Filipovic and Kimmel (2007) considers 
more general specification of the market price of risk. Quadratic term structure models 
are studied in Ahn, Dittmar and Gallant (2002). See the survey paper by Dai and 
Singleton (2003) and see the book by Singleton (2006) for more recent development. 
This section focuses on the continuous-time term structure models with regime-shifting.  

To the best of our knowledge, Landen (2000) provides the first continuous-time 
regime-switching model of the term structure of interest rates. Under the risk-neutral 
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pricing measure, she derives the dynamics of the yield curve and obtains an explicit 
solution for a special regime-switching affine case. Dai and Singleton (2003) proposes a 
fully fledged dynamic model of the term structure of interest rates under 
regime-switching. Their model characterizes the dynamics of interest rates under both the 
risk-neutral and the physical measures in the presence of regime-switching risk premiums. 
Following the approach of Cox, Ingersoll and Ross (1985a,b) and Ahn and Thompson 
(1988), Wu and Zeng (2005) developed a regime-switching models from a general 
equilibrium framework under the systematic risk of regime shifts. Other studies of 
regime-switching term structure models include Elliott and Mamon (2001), Wu and Zeng 
(2004, 2007) and etc. Papers for regime-switching models of the term structure of interest 
rates under default risk can be found in Bielecki and Rutkowski (2000, 2001).  
 
In the rest of this section, we present a slightly more general framework than the one in 
Wu and Zeng (2006). We first review a useful representation of regime shifts introduced 
in Wu and Zeng (2007) with a slight generalization. We then follow the no-arbitrage 
approach to develop a general tractable multi-factor dynamic model of the term structure 
of interest rates that includes not only regime shifts but also jumps. The model allows for 
regime-dependent jumps while both jump risk and regime-switching risk are priced. A 
closed form solution for the term structure is obtained for an affine-type model under 
log-linear approximations.  

 

4.1 A useful representation for regime shift  
Regime-shifting can be viewed as the state changes in a finite-state Markov chain. There 
are three commonly used mechanisms to model a Markov chain with time-varying 
transition probabilities. Each mechanism has its applications in the literature of interest 
rate term structure. The first is Conditional Markov Chain approach, which is discussed 
in the book of Yin and Zhang (1998) with many applications. Bielecki and Rutkowski 
(2000) and (2001) and Dai and Singleton (2003) are applications of this mechanism in 
modeling the term structure of interest rates. Hidden Markov Model (HMM) approach is 
the second mechanism, which is summarized in the book of Elliott et. al. (1995). Elliott 
and Mamon (2001) utilize the HMM approach to derive a model of the term structure of 
interest rates. The third is the Marked Point Process or the Random Measure approach, 
which is employed in Landen (2000). The mark space in Landen’s representation is 

}},,...,1,0{},,...,1,0{:),{( jiNjNijiE ≠∈∈= , the product space of regimes including 
all possible regime switching. The third mechanism has an important advantage over the 
previous two mechanisms. Namely, the regime process has a simple integral form so that 
Ito’s formula can be applied easily.  

Along the line of the third mechanism, a simpler integral form for the regime process 
is developed using only the space of regime as the mark space. This is introduced in Wu 
and Zeng (2007) and we discuss such representation here with a slight generalization.  

Let tS  represent the most recent regime. There are two steps to obtain the simple 
integral representation of tS .  

First, we define the random counting measure ),( ⋅tm  for every t＞ 0.  
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· 

Denote the mark space },...,1,0{ NU = as all possible regimes with the power σ-algebra. 
Denote u as a generic point in U and A as a subset of U. We denote ),( Atm as the 
cumulative number of entering a regime in A during the period (0,t]. For example, 

}){,( utm counts the cumulative times to shift to regime u during (0,t]. Then, m is the 
suitable random counting measure.  

A marked point process or a random measure is uniquely characterized by its 
stochastic intensity kernel,21 ),( ⋅tm

 
. To define the stochastic intensity kernel for , we 

denote η as the usual counting measure on U. Note that η has these two properties: 
For UA∈ , ∫= )()( duIA Aηη  (i.e. )(Aη  counts the number of elements in A) 

and ∫ ∑ ∈
=

AuA ufduuf )()()( η . The stochastic intensity kernel can depend on the current 

time and regime. We also allow ),( ⋅tm  to depend on tX , another state variable to be 
defined later.  

 

We define the stochastic intensity kernel as  

,)()),(),(;(),( dtduttStXuhdudtm ηγ −−−=     (22) 

where )),(),(;( −−− ttStXuh  is the conditional regime-shift (from regime )( −tS  to u) 
intensity at time t given )( −tX  and S(t-). Note that )),(),(;( −−− ttStXuh  corresponds to 
the ijh  in the infinitesimal generator matrix of the Markov chain. We assume  

)()),(,()),(,( '
10)),(),(,( −−−+−−=−−− tXttSuhttSuhettStXuh  

where )),(),(,(0 −−− ttStXuh is a real value and )),(),(,(1 −−− ttStXuh is a L ×
 
1 vector. 

We choose )),(),(,( −−− ttStXuh as an exponential affine form so that we can obtain an 
approximate close form solution for the dynamics of the term structure. Intuitively, we 
can consider ),( dtdumγ as the conditional probability of shifting from Regime )( −tS to 
Regime u during ],[ dttt +  given )( −tX and )( −tS . We can express ),( Atmγ , the 
compensator of ),( Atm , as  

∫ ∫ ∑∫
∈

−−−=−−−=
t

A Au

t

m dSXuhdduSXuhAt
0 0

)),()(;()()),()(;(),( τττττητττγ  

Second, we express )(tS  in the integral form below using the random measure defined 

above: 

  

∫ ×
−−+=

Ut
dudmSuStS

],0[
),())(()0()( ττ       (23) 

                                                 
21 See Last and Brandt (1995) for detailed discussion of marked point process, stochastic intensity kernel and related 
results. 
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Note that ),( dudm τ takes two possible values: 0 or 1. It takes one only at the 
regime-switching time it  and with )( itSu = , the new regime at time it . Hence, the 
above expression is but a telescoping sum: )()(()0()( )1( −<

−+= ∑ itt i tStSStS
i

. The 

corresponding differential form is:  
 

),())(()( dudtmtSutdS
U∫ −−=        (24) 

 

To understand the above differential equation, we can assume there is a regime 
switching from )( −tS to u occurs at time t, then )()()( −−=−− tSutStS  
implying )(uS .  

These two forms are crucial, because they allow the straightforward application of 
Ito’s formula in the following subsections.  

 

4.2 Regime-dependent jump diffusion model for the term structure of interest rates  
This section proposes a general multi-factor term structure model under 

regime-switching jump diffusion. A closed form solution of the term structure is obtained 
for an affine-type model using log-linear approximation.  

 

4.2.1 State variables  
In this Section, the most recent regime )(tS  follows (23) or (24). Other L state 
variables, tX , are described by the following equation, which is a continuous-time 
analogue of Equation (10) but includes an additional jump component:  

∑ −++Θ+Θ= − ttttttttt dNtSJdWtSXdtXtStSdX ),(),,(]),(),([ 10   (25) 

where ),(0 tStΘ  and ),(1 tStΘ  are regime-dependent L×
 
1 vector and L×

 
L  

matrix respectively. ∑ ),,( tSX tt  is an L×
 
L diagonal matrix given by  

 

∑


















+

+

=

ttLtL

ttt

tt

XtStS

XtStS

tSX

),(),(

),(),(

),,(
'
,1,0

'
1,11,0

σσ

σσ

  

 

where ),(,0 tStiσ  (i =1, ..., N) are regime-dependent coefficients and all 1, ( , )i tS tσ  are 
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regime-dependent L×1 vectors. Wt is a L×
 
1 vector of independent standard Brownian 

motions; tN  is a L×
 
1 vector of independent Poisson processes with L×

 
1 time-varying 

and regime-dependent intensity ),();,( −− −− tSJtS ttJδ  is an L× L matrix of 
regime-dependent random jump size with a conditional density ),|( −− tSJg t . 
Given },{ −− tSt , we assume that ),( −− tSJ t are serially independent and are also 
independent of tW  and tN .  

 

4.2.2 The short rate  

The instantaneous short-term interest tr  is a linear function of tX  given tS  and t  

tttt XtStSr '
10 ),(),( ϕϕ +=      (26) 

where ),(0 tStϕ is a scalar and ),(1 tStϕ is a L×
 
1 vector.  

 

4.2.3 The stochastic pricing Kernel  
Using no arbitrage argument (see Harrison and Kreps 1979 for technical conditions), we 
further specify the pricing kernel, tM , which is also called stochastic discount factor in 
Section 3.2. We first present it in a stochastic differential equation (SDE) form as  

'
, , ( ( , ) ) ( ( ), ( ), )[ ( , ) ( , )].t

t D t t J t t J t S mU
t

dM r dt dW dN S t dt X t S t t m dt du dt du
M

λ δ λ γ− −
−

= − − −Λ − − − − − − −∫
           (27)  

The L×
 
1 vector of market prices of diffusion risk conditioning on tX , tS  and t is 

'
, , ( , , ) ( , ) ( , , )D t D t t t D t t tX S t S t X S tλ λ= = Λ ∑  

where '
,1 ,( , ) ( ( , ), ( , ))D t D t D L tS t S t S tλ λΛ =   is an L× 1 vector. The L× 1 vector of market 

prices of jump risk conditioning on −tS and −t  is  
' '
, ,1 ,( , ) ( ( , ), ( , ))J t J t J t J L tS t S t S tλ λ λ λ− − − −= − = − −  

And the market price of regime-switching (from regime )( −tS  to regime u) risk given 
)( −tX , )( −tS  and −t

 
is  

'
0, 1,( , ( )) ( ,( ( )) ( )( ( ), ( ), ) 1 S Su S t u S t X t

S X t S t t eλ λλ − + − −− − − = −  

Where  '
1, 1, ,1 1, ,( , )S S S Lλ λ λ=   

···  

The specifications above complete the model for the term structure of interest rates, 
which can be solved by a change of probability measure. Specifically, for fixed  T> 0, 
we define the equivalent martingale measure Q  
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by the Radon-Nikodym derivative 0/ξξTdP
dQ

=  where for ],0[ Tt ∈  

' '
, , ,0

' '
, , ,0 0

0 0

1( )
2

log(1 )

( ; , ) ( , ) log(1 ( ; , )) ( , )

( )( )

( )

( )

tT
D D D

t

t t
J J J t

t t
S m SU U

dW dr d
t

d dN

u X S d du u X S m d du

e e

e

e

τ τ ττ

τ τ τ

τ τ τ τ

λ τ λ λ ττ

λ δ τ λ

λ γ τ λ τ

ξ

− − − −

− −−

+ −

+ −

∫∫= ×

∫ ∫ ×

∫ ∫ ∫ ∫

    (28) 

Observe that the first two terms of tξ  correspond to the discrete time 
1

1
+−

+ = tm
t eM where 1+tm is given in Equation (11). The extra two terms correspond to the 

market prices of jump and regime-shift.  

In the absence of arbitrage, the price at time −t
 
of a default-free pure discount bond 

that matures at T , ),( TtP − , can be obtained as ,  

 },|{}|{)(),( −−

−−−

−
∫=∫=∫=− tt

drQ
t

drQdrQ
t SXeEFeEeETtP

T

t

T

t

T

t
τττ τττ     (29) 

 with the boundary condition ),(),( TTPTTP =− and the last equality comes from the 
Markov property of ),( tt SX .  

 

4.2.4 The dynamics under Q  

To present the dynamics of state variables, tX and tS under equivalent martingale 
measure Q, we first define  

)),(,),,((),( ,0
'

0 1,0
'

0
tStStS tLtt σσ ∑ ∑ ==  
















==∑ ∑

),(

),(
),(

,1

1,1

1 1

tS

tS
tS

tL

t

t

σ

σ


 

and 

,1

,

( , )
( , )

( , )

D t

D D t

D L t

S t
S t

S t

λ

λ

 
 

Λ = Λ =  
 
 



 

Then, the dynamics of Xt and St under Q are given by the following stochastic 
differential equations respectively 

( ) ( )  ( ) , , , , ,t t t t t t t t tdX X S t dt X S t dW J X S d N− −= Θ +∑ +                (30) 
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( ) ( ), .t tU
dS u S m dt du−= −∫                                     (31)  

The drift term is 

( ) ( ) ( ) ( ) ( )2
0 1, , , , , , ,t t t t t t tt DX S t S t S t X X S t S tλ Θ = Θ +Θ −Σ 

              (32)  

 ( )  ( )0 1, ,t t tS t S t X= Θ +Θ                                  (33)  

with  
 ( ) ( ) ( ) ( )0 0 0, , , ,t t t tDS t S t S t S tΘ = Θ −Λ Σ  

and  
 ( ) ( ) ( ) ( )

1

'
1 1, , , ,t t tDS t S t S t S tΘ = Θ −Λ Σ  

 tW is a L×1 standard Brownian motion under Q;  tN  is a L×1 vector of Poisson processes 
with intensity  ( ),tJ S tδ − −  whose elements are given by 
 ( ), ,ti J S tδ − − = ( ) ( ), ,1 , ,t ti J i JS t S tλ δ− − − − −  for i=1,…,L;  ( ),m t A is the marked point 

process with intensity matrix  ( ); ,t tH u X S− − =  ( ){ }; ,t th u X S− − =  

( ) ( )( ){ }  ( )( )  ( )( ){ }'
1, ,; , 1 ; , tho u S t h u S t X

t t S t th u X S u X S eλ − + −
− − − −− =

 
with  ( )( )0 , th u S − =  

( )( ) ( )( )0 0,, ,Sh u S t u S tλ− + − and  ( )( ) ( )( ) ( )( )1 1 1,, , ,Sh u S t h u S t u S tλ− = − + − . The 

compensator of  ( ),m t A  under Q becomes 



( ) ( )( ) ( )  ( ) ( ), 1 ; , , ; , ,S t t m t tm dt du u X S dt dz h u X S du dtγ λ γ η− − − −= − =  

 

4.2.5 Bond Pricing  
 

Let P(t-,T) = F(t-,Xt-,St-,T ) = F(t-, X, S, T ) where X = Xt- 
 
and S = St-. The 

following proposition gives the partial differential equation (PDE) 
determining the bond price.   

Proposition 4.1 The price of the default-free pure discount bond F (t-, X, S, T ) 
defined in (29) satisfies the following partial differential equation  



2

' '

1 '
2

F F Ftr
t X X X

 ∂ ∂ ∂
+ Θ+ ∑∑ ∂ ∂ ∂ ∂ 

 

               ( )  ( )'

, ,
Q Q

Js t s J t XE F E F rFδ− −+ ∆ + ∆ =         (34) 

with the boundary condition F (T-, X, S, T )= F (T, X, S, T ) = 1. Note that  

( ) ( ), , , , , ,S t t tF F t X u T F t X S T− − −∆ = − − −  and ( )  ( ) ( ), ;Q
S t S S tU

E F Fh u S duη− −∆ = ∆∫ , i.e 
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the mean of S F∆ conditioning on tX − and tS − under Q; 

( ) ( )

( ) ( )1, , , , , ,

, , , , , ,

t t t t

t L t t t

F t X J S T F t X S T

X F t X J S T F t X S TF
− − − −

− − − −

− + − −

− + − −

 
∆ =  

 

  

and ( )  ( ), ,Q
J t X X t tE F F g J X S dJ− − −∆ = ∆∫ , i.e. the mean of 

X F∆  conditioning on tX − and tS −
 
under Q.  

The above proposition follows from the Feynman-Kac formula and the 
Markov property of (X, S).  
 

When we let ( ) ( )( ) ( )( ) ( )', ,, , , A S t t B S t t X t
t tF t X S T e − − + − − −
− −− =  

with ( )( ) ( )( ), , ,A S t t A S t t T− − = − −  and ( )( ) ( )( ), , ,B S t t B S t t T− − = − − , Equation 
(34) becomes  

( )( ) ( )( ) ( )
'

, ,A BS t t S t t X t
t t

 ∂ ∂
− − + − − − ∂ ∂ 

 

( )( )  ( )( )  ( )( ) ( )( )'
0 1, , ,B S t t S t t S t t X t+ − − Θ − − +Θ − − −  

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )'' 2 2
0 1

1 , , , ,
2

S t t B S t t B S t t S t t X t+ ∑ − − − − + − − ∑ − − −  

( )( ) ( )( ) ( )( )  ( )( )  ( )( ) ( ) ( )
''

0 1, , , , , ,1S SA S t t B S t t X t h u S t t h u S t t X t

U
e e duη∆ − − +∆ − − − − − + − − −+ −∫  

( )( ) ( )( )( ) ( ) ( )'' , ,
, 0 11 , , .B S t t J S t tQ

J t t t tE e S t S t Xψ ψ− − − −
−+ − = +  

To solve for ( )( ),A S t t−  and ( )( ),B S t t− − , we apply the following log-linear 
approximations 

( )( )  ( )( )( ) ( )( )  ( )( )( )
''
1, , , ''

11 , , , ( )S tB S t t h u S t t X

Se B S t t h u S t t X t−∆ − − + − −
≈ + ∆ − − + − − −  

and  
 ( )( ) ( )

 ( )( ) ( )
'
1 ', ,

11 , ,h u S t t X te h u S t t X t− − − ≈ + − − −  

Under these approximations:  

( )( ) ( )( ) ( )( )  ( )( )  ( )( ) ( )''
0 1, , , , , ,1S SA S t t B S t t X t h u S t t h u S t t X te e∆ − − +∆ − − − − − + − − −−  

( )( )  ( )( )( ) ( )( )  ( )( )( )''
0 1, , , , , , ( )S SA S t t h u S t t B S t t h u S t t X t

e
∆ − − + − − + ∆ − − + − − −

=
 ( )( )  ( )( ) ( )'

0 1, , , ,h u S t t h u S t t X te − − + − − −−  
( )( )  ( )( ) ( )( )  ( )( )( )0 ', , , '

11 , , , ( )S A S t t h u S t t
Se B S t t h u S t t X t∆ − − + − −≈ + ∆ − − + − − −  

  
 ( )( )

 ( )( ) ( )( )0 ', ,
11 , ,h u S t te h u S t t X t− −− + − − −  
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 ( )( ) ( )( )( )0 , , , , 1Sh u S t t A u S t te e− − ∆ − −= −
 ( )( )0 , ,h u S t te − −+  

  ( )( ) ( )( )  ( )( )( )  ( )( ) ( )' ', , '
1 1, , , , , ,S A u S t t

Se B u S t t h u S t t h u S t t X t∆ − − ∆ − − + − − − − − −  
 

Now by matching coefficients, we obtain a set of differential equations for 
( ) ( )( ), , ,A S t A S t t T− = − −  and ( ) ( )( ), , ,B S t B S t t T− = − −  which can be solved for 

the term structure of interest rates.  
 

Proposition 4.2 The price at time t- of a default-free pure discount bond with maturity T-t 
is given by ( ) ( ) ( )', ,, tA S t B S t XP t T e −− + −− =  and the T- t-period interest rate is given by 

( ),R t T− =  ( ) ( )', , tA S t B S t X
T t T t

−− −
− −

− −
, where ( ),A S t −  and ( ),B S t −  are 

determined by the following differential equations 
 

( )
 ( ) ( ) ( ) ( )' 2

1 1

, 1, , , ,
2

B S t
S t B S t S t B S t

t
∂ −

− +Θ − + ∑ − −
∂

 

 ( )( )  ( )  ( ) ( ) ( )0 ; ,
1 1 1; , ; ,S h u S tA

SU
e B h u S t h u S t e d u Sη ψ−∆ + ∆ + − − − = ∫            (35) 

 
and  
 

( )
 ( ) ( ) ( ) ( )' '2

0 0

, 1, , ,
2

A S t
S B S t B S t S t

t
∂ −

− +Θ − + − ∑ −
∂

 

 ( ) ( )  ( ) ( ) ( )
'

0' , ; ,
0, 1 1SJ B S t h u S tA

J J U
S t E e e e du Sδ η ψ− −∆   + − − + − =   ∫               (36)  

 

with boundary conditions ( ),0 0A S = and ( ),0 0B S = , where 

( ) ( ), ,S A A u t A S t∆ = − − , ( ) ( ), ,S B B u t B S t∆ = − − , and 

( )2 ,B S t = ( ) ( )( )'2 2
1 , ,..., ,LB S t B S t . 

 

5 Conclusions  
Interest rate is probably one of the more important macroeconomic variables that are 

closely watched by financial market participants and policy makers. A great deal of 
research efforts have been devoted to econometric modeling of the dynamic behavior of 
interest rates. This chapter provides a brief review of models of the term structure of 
interest rates under regime shifts. These models retain the same tractability of the 
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single-regime affine models on one hand, and allow more general and flexible 
specifications of the market prices of risk, the dynamics of state variables as well as the 
short-term interest rates on the other hand. These additional flexibilities can be  
important in capturing some silent features of the term structure of interest rates in 
empirical applications. The models can also be applied to analyze the implications of 
regime-switching for bond portfolio allocations and the pricing of interest rate 
derivatives.  

An implicit assumption in the models reviewed in this chapter is that investors can 
observe the regimes. One extension is to assume that regimes are not observable or can 
only be imperfectly observed by investors. For example, if regimes represent different 
stance of the monetary policy, investors have to use observable state variables such as 
interest rates to learn the current regime when the monetary policy is not completely 
transparent.  

Another possible extension is to tie the regimes more closely to economic 
fundamentals. Most regime-switching models are motivated by the business cycle 
fluctuations or shifts in policy regimes. In the term structure models reviewed in this 
chapter, however, regimes are only identified by the dynamics of interest rates and lack 
clear economic interpretations. Introducing other macroeconomic variables that are better 
indicators of the business cycle or the policy as additional state variables can give us 
deeper insight into the dynamic properties of interest rates across different economic 
regimes. 
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