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Abstract

We study a general filtering problem with marked point process observations. The motivation

comes from modeling financial ultra-high frequency data. First, we rigorously derive the un-

normalized filtering equation with marked point process observations under mild assumptions,

especially relaxing the bounded condition of stochastic intensity. Then, we derive the Poisson

chaos expansion for the unnormalized filter. Based on the chaos expansion, we establish the

uniqueness of solutions of the unnormalized filtering equation. Moreover, we derive the Pois-

son chaos expansion for the unnormalized filter density under additional conditions. To explore

the computational advantage, we further construct a new consistent recursive numerical scheme

based on the truncation of the chaos density expansion for a simple case. The new algorithm

divides the computations into those containing solely system coefficients and those including the

observations, and assign the former off-line.
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1. Introduction

The filtering problem with counting process observations was originated from optical signal pro-

cessing and was first introduced by Synder in [45]. Then, such a filtering problem was subsequently

studied with applications in communication and control in [14], [3], [35, §19.3] (the first edition

in 1978), [5, §6.3], [24], [28] and [16].

Recently, there has been considerable interest in filtering with marked point process (MPP)

observations, which is a generalization of filtering with counting process observations. An insur-

ance claim process can be naturally modeled as an MPP, which can be expressed as a random

measure. Motivated by inferring the underlining state of economy, Elliott et al. in [17] studied

the problem of filtering a Markov modulated random measure. Our motivation to consider a more

general filtering problem with MPP observations comes from modeling financial ultra-high fre-

quency data, namely, time-stamped transactions data of asset price. Engle in [18] called such data

as ultra high frequency (UHF) data, because they achieve the maximum level of disaggregation.

UHF data hold the most accurate information of the price evolution, and the direct modeling and

study of these data is important for comprehending and studying market microstructure theory.

UHF data have two stylized characteristics distinguishing from the continuous-time models

in asset pricing, or the equally-spaced daily or weekly closing price behavior in the econometric

literature. First, the time-stamped UHF data occur at varying random time intervals. Two early

influential works, [19] and [18], attempted to model these time-stamped data from the viewpoint

of irregularly-spaced time series. Many papers follow this viewpoint. See a survey paper [41] and

the references therein. The second stylized characteristic is that UHF data contain microstructure

(or trading) noise due to price discreteness, price clustering, ask and bid bounce and other market

microstructure issues. In contrast with information which has a long-term impact on price, noise

only has a short-term impact on price. However, it is well-known that noise (or friction) plays a

fundamental role in asset pricing (see for example [44], a recent presidential addresses to AFA),

and noise should be incorporated in any suitable model of UHF data.

From the standpoint of stochastic process, a general nonlinear filtering model with counting

process observations for UHF data of asset price was proposed in [46]. In this paper, we first

propose a general filtering model with MPP observations in the same spirit as the one for UHF

data in [46]. There is an unobservable signal process, which can be interpreted as the intrinsic

value process for an asset in the setup of UHF data. The intrinsic value process corresponds

to the continuous-time price process in the option pricing literature in a frictionless market or

2



in the empirical econometric literature for equally-spaced daily closing prices. Observations (or

prices) are observed only at random trading times which are modeled by a conditional Poisson

process. Trading (or market microstructure) noise is explicitly modeled and prices are distorted

observations of the intrinsic value process at the trading times. The proposed filtering model

is capable of matching the two stylized features of UHF data as well as many other features in

equally-spaced time series data, because of the general assumption on the intrinsic value process.

Technically, the new filtering model extends the one studied in [46], mainly by considering the

extended generator of a Markov process, the more general MPP observations, and by relaxing

the bounded condition on the stochastic intensity of the observations.

For the extended filtering framework with MPP observations, we derive the unnormalized

filtering equation, which corresponds to the Duncan-Mortensen-Zakai (DMZ) equation in classical

filtering of Wiener process and the Synder equation with counting process observations. We focus

on the unnormalized filtering equation because it can compute the normalized filters and can

avoid the possibility of reciprocating zero in the normalized filters. The derivation contains two

steps. The first step is to prove the equivalence of the weak and mild solutions and the second

one is to derive the mild solution. Note that our derivation of the filtering equation is different

from those given in literature and has its own interest.

Wiener chaos expansion for the DMZ equation in the classical nonlinear filtering has been

obtained (cf. e.g. [36]). Correspondingly, we obtain the Poisson chaos expansion for the unnor-

malized filtering equation via a new filtering technique recently developed in [26] for the classical

nonlinear filtering case. As Wiener chaos expansion is an approach to prove the uniqueness of

solutions of classical filtering equations (cf. e.g. [29]), we further prove the uniqueness of solutions

of the unnormalized filtering equation via Poisson chaos expansion. To the best of our knowl-

edge, this is the first time that this kind of approach is applied in the framework of filtering with

marked point process observations. The main contribution of this paper is that we investigate

the general measure-valued solutions of filtering equations and, more importantly, we prove its

existence and uniqueness without assuming that the stochastic intensity of the observations is

bounded. The relaxation of the bounded condition on the stochastic intensity makes the chaos

expansion method more attractive from the viewpoint of applications and we provide concrete,

interesting practical examples with unbounded intensity functions.

Numerical solution of the unnormalized filter is important because it provides the numerical

solution to the marginal likelihood and the posterior distribution, both of which are important
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in statistical analysis. Based on the Wiener chaos expansion and using the orthonormal Hermite

polynomial system, Lototsky, Mikulevicius and Rozovskii developed in [36, 38] a consistent re-

cursive algorithm to numerically solve the DMZ equation. A major advantage of the algorithm

is that the computations can be separated into two parts: off-line and online. A large amount

of computation related solely to the system coefficients can be carried out off-line, namely, pre-

computed and stored. The online computation involving the observations can be computed as

needed such as the final moment, and can be easily parallelized. Thus, the algorithm greatly

increases the speed for online computation. Correspondingly, we first derive the Poisson chaos

expansion for the unnormalized filter density of a multi-dimensional diffusion signal. Then, using

the orthonormal Hermite polynomial system, we develop a new consistent recursive algorithm for

computing the unnormalized filter density for a simple case. The new recursive algorithm shares

the same desirable properties of the corresponding one based on the Wiener chaos expansion.

Related filtering models for UHF data, not incorporating market microstructure noise and

focusing on estimating price volatility, are [21], [13], [12] and [10]. The innovation approach

was used in [21], [12] and [10] to characterize the unique solution to the Kushner-Stratonovich

equation.

The rest of the paper is organized as follows. The next section presents the filtering model with

MPP observations for UHF data. Section 3 derives the two equivalent forms of the unnormalized

filtering equation for the extended filtering model. Using the newly-developed filtering technique,

Section 4 derives the Poisson chaos expansion and applies it to prove the uniqueness of solutions

of the unnormalized filtering equation. Section 5 derives the Poisson chaos expansion for the

unnormalized filter density and develops a consistent recursive algorithm further using Hermite

polynomials. Section 6 concludes.

2 The Filtering Model

In this section, we present the signal and the MPP observations of the filtering model as well as

an equivalent representation. Let X be the signal and Y be the MPP observations. We assume

that (X, Y ) is on a complete probability space (Ω,F , {Ft}t≥0, P ) with the usual hypothesis.
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2.1 The Signal

In the filtering model of [46], the signal is the latent intrinsic value process of an asset, X, taking

values in R. Here, we consider the state space of X as E, a complete separable metric space with

Borel σ-algebra B(E). In this paper, we only consider time-homogeneous X. However, the results

obtained in this paper can be directly applied to the parametric and non-homogeneous model of

[46], simply by enlarging the dimension of X and noticing the general assumption on E. Below

we first invoke a mild assumption on X.

Assumption 2.1 (X(t))t≥0 is a càdlàg time-homogeneous Markov process taking values in E

and with the extended (infinitesimal) generator defined in (2.1) below.

Let Bb(E) be the family of all bounded Borel measurable functions on E and P (t, x,Γ) (t ≥
0, x ∈ E,Γ ∈ B(E)) be the transition function for X. Then, we have the transition semigroup

(Tt)t≥0 defined by Ttf(x) =
∫
E
f(y)P (t, x, dy) for f ∈ Bb(E). Set C := {f ∈ Bb(E) : bp −

limt↓0 Ttf(x) = f(x),∀x ∈ E}, where bp-lim stands for bounded pointwise limit. Then C ⊃ Cb(E),

the family of all bounded continuous functions on E. Define

D :=

{
f ∈ C : ∃ Af ∈ C such that Ttf(x) = f(x) +

∫ t

0

(TsAf)(x)ds,∀x ∈ E
}
, (2.1)

where A is called the extended (infinitesimal) generator of X and D is its domain (cf. [27, pp.

1102]). Note that D is bounded pointwise dense in Bb(E) and hence measure determining.

Let N be the collection of P -null sets and define FXt := σ(N , X(s), 0 ≤ s ≤ t), t ≥ 0. Then

by [27, Lemma A.1], Mf (t) = f(X(t))−
∫ t

0
Af(X(s))ds is an FXt -martingale under P for f ∈ D.

This shows that our Assumption 2.1 implies the assumption of [46] on X.

The generator and martingale problem approach (see, for example, [20, Chapter 4]) offers

a useful tool for the characterization of Markov processes. The above assumption is general,

subsuming most of popular stochastic processes such as diffusion, stochastic volatility, jump and

Lévy processes employed in asset pricing theory. When A is the generator for a Markov chain,

our filtering model becomes the one considered in [17].

2.2 The Observations

The observation Y has two representations. One representation is a random measure Y , which

is a direct generalization of the counting process observations in [46]. The other representation
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is {Y (Ti)}i≥1, or equivalently, {(Ti, Yi)}i≥1 where (Ti, Yi) is a marked point with Ti as the event

time and Yi = Y (Ti) as the mark describing the event occurred at time Ti. We first describe the

random measure one.

2.2.1 Random Measure Observations

Let U be the mark space of observations with the triple (U,U , µ), which is a measure space where µ

is a finite measure. The random counting measure Y is specified by {Y (A, t) : A ∈ U , t ∈ [0,∞)},
where Y (A, t) is a counting process recording the cumulative number of events that have occurred

up to time t with the marks in set A. Before we present the random measure observations, we

make two more assumptions.

The first assumption specifies a Poisson random measure on a three dimension space, U ×
[0,∞) × [0,∞), where the first [0,∞) is for time and the second one for intensity. Let B[0,∞)

be the Borel σ-algebra of [0,∞), and m be the Lebesgue measure on [0,∞).

Assumption 2.2 ξ is a Poisson random measure on U×B[0,∞)×B[0,∞) with the mean measure

µ×m×m under P .

We give two simple examples to illustrate two important properties of the Poisson random

measure. If A ∈ U , then ξ(A×[0, t]×[0, a]) has a Poisson distribution with mean µ(A)×m([0, t])×
m([0, a]) = µ(A)ta. If Ci ∈ U × B[0,∞)× B[0,∞) for i = 1, 2 and C1 ∩ C2 = φ, then ξ(C1) and

ξ(C2) are independent Poisson random variables.

The second assumption specifies the independence of the signal and the Poisson random

measure.

Assumption 2.3 X and ξ are independent under P.

A random measure can be characterized by its stochastic intensity kernels (See Theorems 8.3.3

and 8.2.2 in [33]). Let λ(u,X(t)) be the stochastic intensity kernel of Y under P at time t for

u ∈ U . Using the projection method of ξ first introduced in [30] and further developed in [22], we

can express the random measure observations, Y (A, t), in the following integral form: for A ∈ U ,

Y (A, t) = Y (A× [0, t]) =

∫
A×[0,t]×[0,+∞)

I[0,λ(u,X(s))](v)ξ(du× ds× dv).

The random measure Y can be characterized by the fact that

Y (A, t)−
∫
A×[0,t]×[0,+∞)

I[0,λ(u,X(s))](v)µ(du)dsdv = Y (A, t)−
∫ t

0

∫
A

λ(u,X(s))µ(du)ds
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is an Ft-martingale. The counting process observations in [46] is a special case with U =

{1, 2, . . . , n} and A = {i}. Then, Y (A, t) = Y ({i}, t) = Yi(t) = Ni(
∫ t

0
λi(X(s))ds) and Yi(t) −∫ t

0
λi(X(s))ds is a martingale.

The next assumption on the stochastic intensity kernel ensures the existence of a desirable

reference measure.

Assumption 2.4 λ : U × E → (0,∞) is U × B(E)-measurable and satisfies∫
[0,t]×U

E[λ(u,X(s))]µ(du)ds <∞, ∀ t > 0. (2.2)

Note that Assumption 2.4 relaxes the bounded assumption in [46] and implies that∫ t

0

∫
U

λ(u,X(s))µ(du)ds <∞, P − a.s., ∀ t > 0. (2.3)

2.2.2 Marked Point Process Observations

Our main results only require the above four assumptions. In order to obtain the equivalence (in

the sense of having the same probability law) of the above random counting measure representa-

tion with a heuristic representation from UHF data, we make the following additional assumption

similar to the one made in [46]. Let a(X(t)) =
∫
U
λ(u,X(t))µ(du) be the total stochastic intensity

at time t.

Assumption 2.5 Under P , the stochastic intensity kernel of Y for (u, t) has the following form:

λ(u,X(t)) = a(X(t))p(u|X(t)),

where p(u|X(t)) is the transition probability from X(t) to u.

The structure of λ(u,X(t)) suggests that a(X(t)) stipulates when an event might occur while

p(u|X(t)) stipulates where the mark might occur.

With Assumption 2.5, we can present the observations as an MPP, {(Ti, Yi)}i≥1, constructed

directly from the signal X. Below, we describe the representation in the context of modeling

UHF data. First, we specify the intrinsic value process X as in Assumption 2.1. For UHF data,

prices are observed at random trading times and contain trading noises. So we need two more

steps. First, we stipulates the trading (or sampling) times T1, T2, . . . , Ti, . . ., as a doubly stochastic

Poisson process with stochastic intensity a(X(t)). Then, Yi = Y (Ti), the noisy trading price at

time Ti, is given by: Y (Ti) = F (X(Ti)), where y = F (x) is a random transformation specified by

7



the transition probability p(y|x). It is straightforward to show that {(Ti, Yi)}i≥1 and the Poisson

random measure Y have the same stochastic intensity kernel with Assumptions 2.1 - 2.5 (see

Proposition 2.1 in [47]). Thus, the two representations have the same probability law and are

equivalent.

The above formulation has a notable financial implication: Price is affected by information

and noise. Information has an effect on the intrinsic value of an asset, X, and has a long-run

impact on the price. However, noise, stipulated by the random transformation F (x), has only a

short-run impact on price, because F (x) does not have an effect on the intrinsic value.

Note that the intrinsic value process is assumed to be a general Markov process. Thus, the

proposed filtering model connects to another econometric literature on operator approach for

continuous-time Markov processes surveyed in [1]. Especially, the new filtering model is a natural

extension of the setup of estimating Markov process sampled at random-time intervals in [15]

where no market microstructure noise is considered.

Moreover, the filtering model has the structure similar to two classes of models. One class is

the time series structural VAR (Vector AutoRegressive) models developed in many early market

microstructure papers (see the recent book [25]). The other class of models is the recent two-scale

frameworks, incorporating market microstructure noises, in the exploding literature of realized

volatility estimators. The papers on this topic include [48] and [2].

3. The Unnormalized Filtering Equation

In this section, we employ the reference measure approach. To relax the bounded condition

of intensity, we begin with identifying the reference measure under condition (2.3). Then, we

prove the equivalence of the mild solution and the usual (weak) solution of the unnormalized

filtering equation. Finally, we obtain the main result of this section, Theorem 3.4, establishing

the existence of solutions of the unnormalized filtering equation.

3.1 The Reference Measure

Note that X and ξ are independent under P . However, this does not imply that X and Y are

independent under P . In the following, we will show that there exists a probability measure Q on

(Ω,F) such that X and Y become independent and Y becomes a unit Poison random measure
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with the mean measure µ×m. Namely, under the reference measure Q, for A ∈ U ,

Y (A, t) =

∫
A×[0,t]×[0,+∞)

I[0,1](v)ξ(du× ds× dv),

and

Y (A, t)−
∫
A×[0,t]×[0,+∞)

I[0,1](v)µ(du)dsdv = Y (A, t)− µ(A)t

is a martingale.

Lemma 3.1 Suppose that (X, Y ) satisfies Assumptions 2.1 - 2.3, λ : U×E → (0,∞) is U×B(E)-

measurable and satisfies (2.3). Let

κ(u, t) =
1

λ(u,X(t))

and define the process (L̂(t))t≥0 by

L̂(t) := exp

{∫ t

0

∫
U

log κ(u, s−)Y (du, ds) +

∫ t

0

∫
U

(1− κ(u, s))λ(u,X(s))µ(du)ds

}
. (3.1)

Then (L̂(t))t≥0 is a (P,Ft)-martingale.

Proof. Observe that

L̂(t) = 1 +

∫ t

0

∫
U

L̂(s−)(κ(u, s−)− 1) (Y (du, ds)− λ(u,X(s))µ(du)ds) . (3.2)

By (2.3) one finds that (L̂(t))t≥0 is a (P,Ft)-local martingale. Since (L̂(t))t≥0 is also nonnegative,

(L̂(t))t≥0 is a (P,Ft)-supermartingale. To show that (L̂(t))t≥0 is a (P,Ft)-martingale, it suffices to

show that E[L̂(t)] = 1 for t ≥ 0. Let PX and P ξ be the marginal probabilities w.r.t. (with respect

to) X and ξ, respectively. Note that L̂ is pathwisely defined. We need to show that Eξ[L̂(t)] = 1,

PX-a.s., for t ≥ 0. (3.2) implies that Eξ[L̂(t)] ≤ 1, PX-a.s. By (2.3) and the assumption that µ

is a finite measure on U , we get∫ t

0

∫
U

Eξ[L̂(s)] · |(κ(u, s)− 1)λ(u,X(s))|µ(du)ds <∞, PX − a.s.

Then L̂ is a (P ξ,Ft)-martingale, PX-a.s. and hence Eξ[L̂(t)] = 1, PX-a.s., for t ≥ 0. Therefore,

E[L̂(t)] = 1 for t ≥ 0. The proof is complete.

Now we can define dQ
dP
|Ft = L̂(t) for t ≥ 0. Then, Q can be extended to be a probability

measure on (Ω,F). Under Q, Y is independent of X and Y is a unit Poisson random measure

with the mean measure µ×m (cf. [5, VIII.T10, pp. 241]). Define

L(t) = 1/L̂(t) (3.3)
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and denote by EQ the expectation w.r.t. Q. Then dP
dQ
|Ft = L(t) and EQ[L(t)] = 1 for t ≥ 0. For

f ∈ Bb(E), we define

πt(f) = E[f(X(t))|FYt ].

By Bayes’ theorem (cf. [5, VI.L5, pp. 171]), we get

πt(f) =
EQ[f(X(t))L(t)|FYt ]

EQ[L(t)|FYt ]
:=

σt(f)

σt(1)
. (3.4)

Following the literature, we call (πt)t≥0 the normalized filter and (σt)t≥0 the unnormalized filter.

3.2 The Derivation

To obtain the unnormalized filtering equation for (σt)t≥0 (see Theorem 3.4 below) without as-

suming the bounded condition of intensity, we first prove the equivalence of the weak and mild

solutions (see Lemma 3.2 below) under such setup by applying a truncation technique via stop-

ping times. Fix a constant T > 0 and denote by Mb(E) the family of all finite signed measures

on (E,B(E)).

Lemma 3.2 Suppose that (X, Y ) satisfies Assumptions 2.1 - 2.3, λ : U×E → (0,∞) is U×B(E)-

measurable and satisfies (2.3). Let (vt)0≤t≤T be an Mb(E)-valued càdlàg process satisfying

Q

[∫ T

0

∫
U

|vt|(|λ(u)− 1|)µ(du)dt <∞
]

= 1.

Hereafter λ(u) := λ(u, ·), which is a Borel measurable function on E. Then

vt(f) = v0(f) +

∫ t

0

vs(Af)ds+

∫ t

0

∫
U

vs−((λ(u)− 1)f)(Y (du, ds)− µ(du)ds),

Q− a.s., ∀f ∈ D (3.5)

if and only if

vt(f) = v0(Ttf) +

∫ t

0

∫
U

vs−((λ(u)− 1)Tt−sf)(Y (du, ds)− µ(du)ds), Q− a.s.,

∀f ∈ Bb(E). (3.6)

Remark 3.3 In the literature, the solution of equation (3.5) is called weak solution while the

solution of equation (3.6) is called mild solution. Lemma 3.2 established the equivalence of these

two types of solutions.
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Proof. We will prove that (3.5) and (3.6) are equivalent. For f ∈ D, we define

v(t, f) = v0(Ttf) +

∫ t

0

∫
U

vs−((λ(u)− 1)Tt−sf)(Y (du, ds)− µ(du)ds)

−
{
v0(f) +

∫ t

0

vs(Af)ds+

∫ t

0

∫
U

vs−((λ(u)− 1)f)(Y (du, ds)− µ(du)ds)

}
= [v0(Ttf)− v0(f)] +{∫ t

0

∫
U

vs−((λ(u)− 1)Tt−sf)(Y (du, ds)− µ(du)ds)

−
∫ t

0

∫
U

vs−((λ(u)− 1)f)(Y (du, ds)− µ(du)ds)

}
−
∫ t

0

vs(Af)ds. (3.7)

Note that Ttf − f =
∫ t

0
TsAfds. We obtain by Fubini’s Theorem that

v(t, f) =

∫ t

0

v0(TsAf)ds−
∫ t

0

vs(Af)ds+ I(t,Af), (3.8)

where

I(t, f) :=

∫ t

0

∫
U

∫ t−s

0

vs−((λ(u)− 1)Trf)dr(Y (du, ds)− µ(du)ds).

For n ∈ N, define the stopping time Tn by

Tn := inf

{
0 6 t 6 T :

∫ t

0

∫
U

|vs|(|λ(u)− 1|)µ(du)ds > n

}
. (3.9)

Then Tn ↑ T as n→∞, Q-a.s. We also define

I(t, f, n) :=

∫ t∧Tn

0

∫
U

∫ t−s

0

vs−((λ(u)− 1)Trf)dr(Y (du, ds)− µ(du)ds),

v(t, f, n) :=

∫ t

0

v0(TsAf)ds−
∫ t

0

vs(Af)ds+ I(t,Af, n). (3.10)

Part I First, suppose that (3.5) holds. Let f ∈ D. By the stochastic Fubini’s theorem (cf. [42,

Theorem IV. 46]), (3.9) and (3.5), we get

I(t, f, n) =

∫ t

0

∫ t−r

0

∫
U

I{s6Tn}vs−((λ(u)− 1)Trf)(Y (du, ds)− µ(du)ds)dr

=

∫ t

0

[
v(t−r)∧Tn(Trf)− v0(Trf)−

∫ (t−r)∧Tn

0

vs(ATrf)ds

]
dr. (3.11)
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The last term of (3.11) is equal to∫ t

0

∫ t

0

I{s6t−r}I{s6Tn}vs(ATrf)dsdr =

∫ t

0

∫ t

0

I{s6Tn}I{r6t−s}vs(ATrf)drds

=

∫ t∧Tn

0

vs

(∫ t−s

0

ATrfdr

)
ds

=

∫ t∧Tn

0

vs(Tt−sf)ds−
∫ t∧Tn

0

vs(f)ds.

Consequently,

I(t, f, n) =

∫ t

0

vs∧Tn(Tt−sf)ds−
∫ t

0

v0(Tsf)ds

−
∫ t∧Tn

0

vs(Tt−sf)ds+

∫ t∧Tn

0

vs(f)ds.

We complete the proof through the following three steps.

(a) Let f = Rαϕ for some α > 0 and ϕ ∈ D. Hereafter Rα :=
∫∞

0
e−αtTtdt, α > 0, is the resolvent

of (Tt)t≥0. Then we obtain by (3.10) that

v(t, f, n) =

∫ t

0

I{s>Tn}vTn(Tt−sAf)ds−
∫ t

0

I{s>Tn}vs(Af)ds.

Since Tn ↑ T as n→∞, Q-a.s., we get v(t, f) = limn→∞ v(t, f, n) = 0, Q-a.s.

(b) Let f ∈ D. Define fk := kRkf , k ∈ N. Note that fk → f boundedly and pointwise as

k → ∞. By the bounded convergence theorem, v0(Ttfk) → v0(Ttf) and vt(fk) → vt(f) as

k →∞. Moreover, by (3.9), we get

EQ

[∣∣∣∣∫ t∧Tn

0

∫
U

vs−((λ(u)− 1)Tt−sfk)(Y (du, ds)− µ(du)ds)

−
∫ t∧Tn

0

∫
U

vs−((λ(u)− 1)Tt−sf)(Y (du, ds)− µ(du)ds)

∣∣∣∣]→ 0

as k → ∞ for each n. Then v(t, f) = 0, Q-a.s, on {t ≤ Tn}. Thus v(t, f) = 0, Q-a.s. Therefore

(3.6) holds for any f ∈ D by (3.7) and (3.5).

(c) Let f ∈ Bb(E). Since D is bounded pointwise dense in Bb(E), there exists a sequence

{fn}n≥1 ⊂ D such that supn≥1 ‖fn‖∞ <∞ and limn→∞ fn = f boundedly and pointwise. There-

fore (3.6) holds for f by (b), the dominated convergence theorem and the stopping time argument

(cf. (b)).

Part II Conversely, suppose that (3.6) holds for any f ∈ Bb(E). Let f ∈ D. We obtain that∫ t

0

vs(Af)ds =

∫ t

0

v0(TsAf)ds+

∫ t

0

∫ r

0

∫
U

vs−((λ(u)− 1)Tr−sAf)(Y (du, ds)− µ(du)ds)dr.
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Hence, by (3.8), we get

v(t, f) = I(t,Af)−
∫ t

0

∫ r

0

∫
U

vs−((λ(u)− 1)Tr−sAf)(Y (du, ds)− µ(du)ds)dr

=

∫ t

0

∫
U

∫ t

s

vs−((λ(u)− 1)Tr−sAf)dr(Y (du, ds)− µ(du)ds)

−
∫ t

0

∫
U

∫ r

0

vs−((λ(u)− 1)Tr−sAf)(Y (du, ds)− µ(du)ds)dr

v(t, f, n) =

∫ t

0

∫
U

∫ t

s

I{s6Tn}vs−((λ(u)− 1)Tr−sAf)dr(Y (du, ds)− µ(du)ds)

−
∫ t

0

∫ r

0

∫
U

vs−((λ(u)− 1)Tr−sAf)(Y (du, ds)− µ(du)ds)dr

=

∫ t

0

∫ r∧Tn

0

∫
U

vs−((λ(u)− 1)Tr−sAf)(Y (du, ds)− µ(du)ds)dr

−
∫ t

0

∫ r

0

∫
U

vs−((λ(u)− 1)Tr−sAf)(Y (du, ds)− µ(du)ds)dr → 0 as n→∞, Q− a.s.

Therefore (3.5) holds.

Theorem 3.4 Suppose that (X, Y ) satisfies Assumptions 2.1 - 2.4. Then, for any t > 0 and

f ∈ D, we have

σt(f) = σ0(f) +

∫ t

0

σs(Af)ds+

∫ t

0

∫
U

σs−((λ(u)− 1)f)(Y (du, ds)− µ(du)ds), Q− a.s. (3.12)

Proof. Note that (2.2) is equivalent to∫ t

0

∫
U

EQ[L(s)|λ(u,X(s))− 1|]µ(du)ds <∞, ∀ t > 0,

and, under Q, Y is independent of X and Y is a unit Poisson random measure with the mean

measure µ×m. By (3.1) and (3.3), we get

L(t) = 1 +

∫ t

0

∫
U

L(s−)(λ(u,X(s))− 1)(Y (du, ds)− µ(du)ds).

Then, for f ∈ Bb(E), we have

f(X(t))L(t) = f(X(t)) +

∫ t

0

∫
U

f(X(t))L(s−)(λ(u,X(s))− 1)(Y (du, ds)− µ(du)ds). (3.13)

By taking conditional expectations on both sides of (3.13) and using the integral representation

of martingales (cf. [5, VIII.T8, pp. 239]), as in [5, VI.T7 and R9, pp.173 and 177], we find that

EQ[f(X(t))L(t)|FYt ] = EQ[f(X(t))]

+

∫ t

0

∫
U

EQ[f(X(t))L(s−)(λ(u,X(s))− 1)|FYs ](Y (du, ds)− µ(du)ds).

13



Further, by the Q-independence of X and Y and the Markovian property of X, we have∫ t

0

∫
U

EQ[f(X(t))L(s−)(λ(u,X(s))− 1)|FYs ](Y (du, ds)− µ(du)ds)

=

∫ t

0

∫
U

EQ[L(s−)(λ(u,X(s))− 1)Tt−sf(Xs)|FYs ](Y (du, ds)− µ(du)ds).

(cf. [5, VI.T7 and R9, pp. 173 and 177]). Then, we have

σt(f) = σ0(Ttf) +

∫ t

0

∫
U

σs−((λ(u)− 1)Tt−sf)(Y (du, ds)− µ(du)ds), Q− a.s., ∀f ∈ Bb(E).

Therefore, the proof is completed by Lemma 3.2.

In the literature,(3.12) is called the unnormalized filtering equation, its uniqueness will be

discussed in the next section.

4. Poisson Chaos Expansion and the Uniqueness of Solu-

tions

A general approach to prove the uniqueness of solutions of filtering equations is the method of

filtered martingale problem developed in [32]. See [28] and [11] for filtering with counting process

observations and [31] for a recent development. Here, we derive the Poisson chaos expansion for

the unnormalized filtering equation and thus obtain the uniqueness of its solutions.

We first consider the special and less-demanding case that λ ≥ 1. Fix a constant T > 0.

Denote by M+(E) the families of all finite measures on (E,B(E)) and denote by ν the initial

distribution of X.

Lemma 4.1 Suppose that (X, Y ) satisfies Assumptions 2.1 - 2.3, λ : U×E → [1,∞) is U×B(E)-

measurable and satisfies (2.3). Let (vt)0≤t≤T be an M+(E)-valued càdlàg process satisfying

(i)
∫ T

0

∫
U
v2
t (λ(u)− 1)µ(du)dt <∞, Q-a.s.

(ii) For any f ∈ D, {vt(f)}0≤t≤T is an {FYt }0≤t≤T semi-martingale with

vt(f) = v0(f) +

∫ t

0

vs(Af)ds+

∫ t

0

∫
U

vs−((λ(u)− 1)f)(Y (du, ds)− µ(du)ds), Q-a.s.

Let f be a function on E satisfying EQ[v2
t (|f |)] <∞ for some t ∈ [0, T ]. Then

vt(f) = v0(Ttf) +

∫ t

0

∫
U

vs−((λ(u)− 1)Tt−sf)(Y (du, ds)− µ(du)ds), Q-a.s. (4.1)
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Proof. For n ∈ N, we define fn := ((−n) ∨ f) ∧ n. Then, by Lemma 3.2, we have

vt(fn) = v0(Ttfn) +

∫ t

0

∫
U

vs−((λ(u)− 1)Tt−sfn)(Y (du, ds)− µ(du)ds), Q-a.s. (4.2)

and

vt(|fn|) = v0(Tt|fn|) +

∫ t

0

∫
U

vs−((λ(u)− 1)Tt−s|fn|)(Y (du, ds)− µ(du)ds), Q-a.s. (4.3)

By (4.3), Fatou’s lemma and the dominated convergence theorem, we get

v2
0(Tt|f |) +

∫ t

0

∫
U

EQ[v2
s((λ(u)− 1)Tt−s|f |)]µ(du)ds

≤ lim
n→∞

[
v2

0(Tt|fn|) +

∫ t

0

∫
U

EQ[v2
s((λ(u)− 1)Tt−s|fn|)]µ(du)ds

]
= lim

n→∞
EQ[v2

t (|fn|)]

= EQ[v2
t (|f |)]

< ∞. (4.4)

Therefore (4.1) holds by (4.2), (4.4) and the dominated convergence theorem.

Theorem 4.2 Suppose that (X, Y ) satisfies Assumptions 2.1 - 2.3, λ : U × E → [1,∞) is

U × B(E)-measurable and satisfies (2.3). Let (vit)0≤t≤T , i = 1, 2, be two M+(E)-valued càdlàg

processes satisfying

(i) vi0 = ν and
∫ T

0

∫
U
{vit(λ(u)− 1)}2µ(du)dt <∞, Q-a.s.

(ii) For any f ∈ D, {vit(f)}0≤t≤T is an {FYt }0≤t≤T semi-martingale with

vit(f) = vi0(f) +

∫ t

0

vis(Af)ds+

∫ t

0

∫
U

vis−((λ(u)− 1)f)(Y (du, ds)− µ(du)ds), Q-a.s.

(iii) EQ[{vit(|f |)}2] <∞ for any f ∈ D and t ∈ [0, T ].

Then v1
t = v2

t for all t ∈ [0, T ]. Moreover, we have the unique Poisson chaos expansion

vit(f) = ν(Ttf) +

∫ t

0

∫
U

ν(Tt1((λ(u1)− 1)Tt−t1f))(Y (du1, dt1)− µ(du1)dt1)

+

∫ t

0

∫
U

∫ t1

0

∫
U

ν(Tt2((λ(u2)− 1)Tt1−t2((λ(u1)− 1)Tt−t1f)))

·(Y (du2, dt2)− µ(du2)dt2)(Y (du1, dt1)− µ(du1)dt1)

+ · · · , Q-a.s., ∀f ∈ D. (4.5)
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Proof. Let f ∈ D and set vt = v1
t or vt = v2

t for t ∈ [0, T ]. Then, by Lemma 4.1, we get

vt(f) = v0(Ttf) +

∫ t

0

∫
U

vt1−((λ(u1)− 1)Tt−t1f)(Y (du1, dt1)− µ(du1)dt1), Q-a.s. (4.6)

By (4.6) we get
∫ T

0

∫
U
EQ[v2

t1
((λ(u1)−1)Tt−t1|f |)]µ(du1)dt1 ≤ EQ[v2

T (|f |)] <∞, hence EQ[v2
t1

((λ(u1)−
1)Tt−t1|f |)] <∞ for µ×m-a.e. (u1, t1). By Lemma 4.1, for µ×m-a.e. (u1, t1), we have

vt1((λ(u1)− 1)Tt−t1f) = v0(Tt1((λ(u1)− 1)Tt−t1f))

+

∫ t1

0

∫
U

vt2−((λ(u2)− 1)Tt1−t2((λ(u1)− 1)Tt−t1f))(Y (du2, dt2)− µ(du2)dt2), Q-a.s. (4.7)

Since EQ[v2
t1

((λ(u1) − 1)Tt−t1|f |)] < ∞, similar to the proof of Lemma 4.1, we obtain by

considering ((−n) ∨ ((λ− 1)Tt−t1f)) ∧ n and Fatou’s lemma that

v2
0(Tt1((λ(u1)− 1)Tt−t1|f |)) +

∫ t1

0

∫
U

EQ[v2
t2

((λ(u2)− 1)Tt1−t2((λ(u1)− 1)Tt−t1|f |))]µ(du2)dt2

≤ EQ[v2
t1

((λ(u1)− 1)Tt−t1|f |)] <∞.

Then, by (4.6) and (4.7), we get

vt(f) = v0(Ttf) +

∫ t

0

∫
U

v0(Tt1((λ(u1)− 1)Tt−t1f))(Y (du1, dt1)− µ(du1)dt1)

+

∫ t

0

∫
U

∫ t1

0

∫
U

vt2−((λ(u2)− 1)Tt1−t2((λ(u1)− 1)Tt−t1f))

·(Y (du2, dt2)− µ(du2)dt2)(Y (du1, dt1)− µ(du1)dt1), Q-a.s.

Furthermore, we obtain by induction that for each n ≥ 2,

vt(f) = v0(Ttf) +

∫ t

0

∫
U

v0(Tt1((λ(u1)− 1)Tt−t1f))(Y (du1, dt1)− µ(du1)dt1)

+ · · ·

+

∫ t

0

∫
U

∫ t1

0

∫
U

· · ·
∫ tn−2

0

∫
U

v0(Ttn−1(· · ·))

·(Y (dun−1, dtn−1)− µ(dun−1)dtn−1) · · · (Y (du2, dt2)− µ(du2)dt2)(Y (du1, dt1)− µ(du1)dt1)

+

∫ t

0

∫
U

∫ t1

0

∫
U

· · ·
∫ tn−1

0

∫
U

vtn−((λ(un)− 1)Ttn−1−tn(· · ·))

·(Y (dun, dtn)− µ(dun)dtn) · · · (Y (du2, dt2)− µ(du2)dt2)(Y (du1, dt1)− µ(du1)dt1), Q-a.s. (4.8)

Note that vt(f) ∈ L2(Ω,FYt , Q). By the theory of Poisson chaos expansion (cf. e.g. [40]) we have

L2(Ω,FYt , Q) =
∞∑
n=0

⊕
H(t)n, (4.9)
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where H(t)n is the space of n-fold multiple Poisson integrals on the interval [0, t]. We obtain by

the orthogonality of H(t)n, n ∈ N, that

EQ
[
|v0(Ttf)|2

]
+ EQ

[∣∣∣∣∫ t

0

∫
U

v0(Tt1((λ(u1)− 1)Tt−t1f))(Y (du1, dt1)− µ(du1)dt1)

∣∣∣∣2
]

+ · · ·+ EQ

[∣∣∣∣∫ t

0

∫
U

∫ t1

0

∫
U

· · ·
∫ tn−2

0

∫
U

v0(Ttn−1(· · ·))

·(Y (dun−1, dtn−1)− µ(dun−1)dtn−1) · · · (Y (du2, dt2)− µ(du2)dt2)(Y (du1, dt1)− µ(du1)dt1)|2
]

≤ EQ[|vt(f)|2] <∞.

Since n is arbitrary, the right hand side of (4.5) converges in L2(Ω,FYt , Q) and is thus well-defined.

By (4.8), one finds that for each n ∈ N the first n terms of the Poisson chaos expansion of vt(f)

must be equal to the first n terms of the right hand side of (4.5). Hence by (4.9) we obtain the

unique Poisson chaos expansion (4.5) of vt(f). Therefore, v1
t = v2

t for all t ∈ [0, T ] since D is a

measure determining subset of Bb(E).

Next, we consider the general and more complicated case when λ > 0.

Theorem 4.3 Suppose that (X, Y ) satisfies Assumptions 2.1 - 2.3, λ : U × E → (0,∞) is

U × B(E)-measurable and satisfies (2.3), and∫ T

0

∫
U

∫ t1

0

∫
U

· · ·
∫ tn−1

0

∫
U

ν2(Ttn(|λ(un)− 1|Ttn−1−tn(|λ(un−1)− 1| · · ·Tt1|λ(u1)− 1|)))

·µ(dun)dtn · · ·µ(du2)dt2µ(du1)dt1 <∞, ∀n ∈ N. (4.10)

Let (vit)0≤t≤T , i = 1, 2, be two Mb(S)-valued càdlàg processes satisfying

i) vi0 = ν and
∫ T

0

∫
U
EQ[|vit|2(|λ(u)− 1|)]µ(du)dt <∞.

(ii) For any f ∈ D, {vit(f)}0≤t≤T is an {FYt }0≤t≤T semi-martingale with

vit(f) = vi0(f) +

∫ t

0

vis(Af)ds+

∫ t

0

∫
U

vis−((λ(u)− 1)f)(Y (du, ds)− µ(du)ds), Q− a.s.

Then v1
t = v2

t for all t ∈ [0, T ]. Moreover, we have the unique Poisson expansion

vit(f) = ν(Ttf) +

∫ t

0

∫
U

ν(Tt1((λ(u1)− 1)Tt−t1f))(Y (du1, dt1)− µ(du1)dt1)

+

∫ t

0

∫
U

∫ t1

0

∫
U

ν(Tt2((λ(u2)− 1)Tt1−t2((λ(u1)− 1)Tt−t1f)))

·(Y (du2, dt2)− µ(du2)dt2)(Y (du1, dt1)− µ(du1)dt1)

+ · · · , Q-a.s., ∀f ∈ Bb(E). (4.11)
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Remark 4.4 Condition (4.10) is not needed for the case when λ ≥ 1, because the positiveness

of the unnormalized filter makes it possible to relax condition (4.10) when λ ≥ 1. This point was

noticed in [26], where the classical filtering models are considered. Note that λ ≥ 1 ensures that

Fatou’s lemma and the dominated convergence theorem can be applied to obtain equation (4.4)

and hence equation (4.1) of Lemma 4.1. For general λ > 0, the positiveness of the unnormalized

filters alone is not sufficient to guarantee that equation (4.4) holds. Condition (4.10) is needed

so that the dominated convergence theorem can apply. In the L2-framework, condition (4.10) is

a very weak condition to ensure the full Poisson chaos expansion (4.11).

Proof. Set vt = v1
t or vt = v2

t for t ∈ [0, T ]. Then
∫ T

0

∫
U
EQ[|vt|2(|λ(u) − 1|)]µ(du)dt < ∞ by

condition (i). Let f ∈ Bb(E). By Lemma 3.2, vt(f) ∈ L2(Ω,Ft, Q) for t ∈ [0, T ] and

vt(f) = v0(Ttf) +

∫ t

0

∫
U

vt1−((λ(u1)− 1)Tt−t1f)(Y (du1, dt1)− µ(du1)dt1), Q− a.s.

Define (λ− 1)n := (λ− 1) ∧ n for n ∈ N. Then, by the dominated convergence theorem, we get

vt(f) = v0(Ttf) + lim
n→∞

∫ t

0

∫
U

vt1−((λ(u1)− 1)nTt−t1f)(Y (du1, dt1)− µ(du1)dt1), Q− a.s.

Hereafter the limit is taken in the L2-sense.

Apply the above argument to (λ− 1)nTt−t1f . By
∫ T

0

∫
U
EQ[|vt|2(|λ(u)− 1|)]µ(du)dt <∞, the

dominated convergence theorem and (4.10), we get

vt(f) = v0(Ttf) + lim
n→∞

∫ t

0

∫
U

v0(Tt1((λ(u1)− 1)nTt−t1f))(Y (du1, dt1)− µ(du1)dt1)

+ lim
n→∞

lim
n1→∞

∫ t

0

∫
U

∫ t1

0

∫
U

vt2−((λ(u2)− 1)n1Tt1−t2((λ(u1)− 1)nTt−t1f))

·(Y (du2, dt2)− µ(du2)dt2)(Y (du1, dt1)− µ(du1)dt1)

= v0(Ttf) +

∫ t

0

∫
U

v0(Tt1((λ(u1)− 1)Tt−t1f))(Y (du1, dt1)− µ(du1)dt1)

+ lim
n→∞

lim
n1→∞

∫ t

0

∫
U

∫ t1

0

∫
U

vt2−((λ(u2)− 1)n1Tt1−t2((λ(u1)− 1)nTt−t1f))

·(Y (du2, dt2)− µ(du2)dt2)(Y (du1, dt1)− µ(du1)dt1),

Q−a.s.

Then, by orthogonality, the first two terms of the above summation must be the first two terms

of the unique Poisson expansion of vt(f). Repeat this procedure, by induction, we obtain the

unique Poisson expansion (4.11) of vt(f). Therefore, v1
t = v2

t for all t ∈ [0, T ].
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Theorem 4.5 Suppose that (X, Y ) satisfies Assumptions 2.1 - 2.4, and

∞∑
n=1

∫ T

0

∫
U

∫ t1

0

∫
U

· · ·
∫ tn−1

0

∫
U

ν2(Ttn(|λ(un)− 1|Ttn−1−tn(|λ(un−1)− 1| · · ·Tt1|λ(u1)− 1|)))

·µ(dun)dtn · · ·µ(du2)dt2µ(du1)dt1 <∞. (4.12)

Then {σt}0≤t≤T is the uniqueMb(S)-valued solution of the unnormalized filtering equation (3.12).

Moreover, we have the unique Poisson chaos expansion

σt(f) = ν(Ttf) +

∫ t

0

∫
U

ν(Tt1((λ(u1)− 1)Tt−t1f))(Y (du1, dt1)− µ(du1)dt1)

+

∫ t

0

∫
U

∫ t1

0

∫
U

ν(Tt2((λ(u2)− 1)Tt1−t2((λ(u1)− 1)Tt−t1f)))

·(Y (du2, dt2)− µ(du2)dt2)(Y (du1, dt1)− µ(du1)dt1)

+ · · · , Q-a.s., ∀f ∈ Bb(E). (4.13)

Proof. By Theorems 3.4 and 4.3, we only need to show that

EQ

[∫ T

0

∫
U

{σt(|λ(u)− 1|)}2 µ(du)dt

]
<∞.

Define (λ− 1)n := (λ− 1)∧n for n ∈ N. Let {σ(λ−1)n
t }0≤t≤T be the unnormalized filtering process

w.r.t. (λ− 1)n, i.e.,

σ
(λ−1)n
t (f) := EQ,(λ−1)n [f(X(t))L(λ−1)n(t)|FY,(λ−1)n

t ], f ∈ Bb(E).

Hereafter, we use Y (λ−1)n , FY,(λ−1)n
t , Q(λ−1)n and EQ,(λ−1)n to denote respectively Y , FYt , Q and

EQ corresponding to the intensity function (λ − 1)n. Since X and Y are independent under Q,
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by Fatou’s Lemma, Theorem 3.4, Theorem 4.3 and the dominated convergence theorem, we get

EQ

[∫ T

0

∫
U

{σt(|λ(u)− 1|)}2µ(du)dt

]
=

∫ T

0

∫
U

∫ (∫
|λ(u)− 1|(X(t))L(t)dQX

)2

dQY µ(du)dt

≤ lim
n→∞

∫ T

0

∫
U

∫ (∫
|λ(u)− 1|(X(t))L(λ−1)n(t)dQX

)2

dQY µ(du)dt

= lim
n→∞

∫ T

0

∫
U

∫ (∫
|λ(u)− 1|(X(t))L(λ−1)n(t)dQ(λ−1)n,X

)2

dQ(λ−1)n,Y µ(du)dt

= lim
n→∞

EQ,(λ−1)n

[∫ T

0

∫
U

{σt(|λ(u)− 1|)}2µ(du)dt

]
≤ lim

n→∞
lim
n1→∞

EQ,(λ−1)n

[∫ T

0

∫
U

{σt(|(λ(u)− 1)n1|}2µ(du)dt

]
≤

∞∑
n=1

∫ T

0

∫
U

∫ t1

0

∫
U

· · ·
∫ tn−1

0

∫
U

ν2(Ttn(|λ(un)− 1|Ttn−1−tn(|λ(un−1)− 1| · · ·Tt1 |λ(u1)− 1|)))

·µ(dun)dtn · · ·µ(du2)dt2µ(du1)dt1

< ∞,

where QX and QY denote the marginal probabilities of X and Y w.r.t. Q, respectively.

Remark 4.6 The assumptions of Theorems 4.3 and 4.5 are weak and can be verified for a large

class of unbounded stochastic intensities λ. Below we give two examples. For simplicity, we let

U = {1} and denote h := λ− 1.

(i) Suppose that η is a σ-finite measure on (E,B(E)) such that (Tt)t≥0 can be extended to

be a contraction semigroup on L2(E; η) (e.g. X is a symmetric Markov process or is a non-

symmetric Markov process associated with a Dirichlet form), dν = u0dη with u0 ∈ L2(E; η), and

h ∈ Ln(E; η) for any n ∈ N. Then (4.10) holds. In fact, noting that (Ttf(x))n = (Ex[f(X(t))])n ≤
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Ex[f
n(X(t))] = Ttf

n(x) for any f ≥ 0 on E and n ∈ N, we get

ν(Ttn+1 (|h|Ttn−tn+1(|h|Ttn−1−tn · · · )))

=

∫
E

u0Ttn+1(|h|Ttn−tn+1(|h|Ttn−1−tn · · · ))dη

≤
(∫

E

u2
0dη

)1/2(∫
E

[Ttn+1(|h|Ttn−tn+1(|h|Ttn−1−tn · · · ))]2dη
)1/2

≤
(∫

E

u2
0dη

)1/2(∫
E

|h|2(Ttn−tn+1(|h|Ttn−1−tn · · · ))2dη

)1/2

≤
(∫

E

u2
0dη

)1/2(∫
E

|h|4dη
)1/4(∫

E

(Ttn−tn+1(|h|Ttn−1−tn · · · ))4dη

)1/4

≤
(∫

E

u2
0dη

)1/2(∫
E

|h|4dη
)1/4(∫

E

(Ttn−tn+1(|h|2(Ttn−1−tn · · · )2))2dη

)1/4

≤
(∫

E

u2
0dη

)1/2(∫
E

|h|4dη
)1/4(∫

E

|h|4(Ttn−1−tn · · · )4dη

)1/4

≤
(∫

E

u2
0dη

)1/2(∫
E

|h|4dη
)1/4(∫

E

|h|8dη
)1/8(∫

E

(Ttn−1−tn · · · )8dη

)1/8

≤ · · ·

< ∞.

Hence (4.10) is satisfied.

This is a general example because of the generality of X and because the η (initial distribution

of X) in ν is a general measure, which can be different from the Lebesgue measure dx in appli-

cations. For example, if dη = ρ(x)dx where ρ(x) decays at infinity faster than any power of x,

then any function λ of polynomial-order belongs to every Lp(Rd; dη) and hence satisfies condition

(4.10). An interesting and useful example is as follows. Let X be the Ornstein-Uhlenbeck (OU)

process in Rd:

dX(t) = −1

2
X(t)dt+ dW (t),

where W is the standard Brownian motion in Rd and let

dη =
1

(2π)d/2
e−
|x|2
2 dx

be the standard d-dimensional normal distribution. Then, any function λ of polynomial-order

belongs to every Lp(Rd; dη) and hence satisfies condition (4.10). Clearly, the unbounded condition

of polynomial-order, which arises frequently in applications, is weaker than the bounded condition.

Vasicek interest rate model, which is an OU process, is commonly used in financial bond

pricing. There are UHF data of bond trading price such as GovPX tick-by-tick data, which
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has been widely used in empirical finance literature (see, for example, [23] and [4]). A further

concrete example can let the intrinsic value process of a short interest rate, X(t), as a Vasicek

model. When focusing on U = {1}, namely, the trading activity, we can allow λ as a polynomial

such as λ(u, x) = ax2 + 1.

(ii) Let {σ|h|+1
t }0≤t≤T be the unnormalized filtering process w.r.t. (|h|+ 1), i.e.,

σ
|h|+1
t (f) := EQ,|h|+1[f(X(t))L|h|+1(t)|FY,|h|+1

t ], f ∈ Bb(E),

where

L|h|+1(t) := exp

{∫ t

0

log(|h|(X(s−)) + 1)dY |h|+1(s)−
∫ t

0

|h|(X(s))ds

}
,

with Y as a Poisson process. Hereafter, we use Y |h|+1, FY,|h|+1
t , Q|h|+1 and EQ,|h|+1 to denote

respectively Y , FYt , Q and EQ corresponding to the stochastic intensity (|h| + 1). By Theorem

3.4, we get

σ
|h|+1
t (f) = σ0(f) +

∫ t

0

σ|h|+1
s (Af)ds+

∫ t

0

σ
|h|+1
s− (|h|f)d(Y |h|+1(s)− s), Q|h|+1-a.s., ∀f ∈ D.

Moreover, {σ|h|+1
t (1)}0≤t≤T is an {FY,|h|+1

t }0≤t≤T martingale under Q|h|+1.

Let X be a conservative Markov process. Then

σ
|h|+1
t (1) = 1 +

∫ t

0

σ
|h|+1
s− (|h|)d(Y |h|+1(s)− s), Q|h|+1-a.s.

Further, we assume that {σ|h|+1
t (1)}0≤t≤T is square-integrable, which is satisfied, e.g. if the

Novikov-type exponential integrability condition

E

[
exp

{∫ t

0

h2(X(s))ds

}]
<∞

is satisfied. Note that the Novikov-type condition is significantly weaker than the bounded condi-

tion, which is assumed in the setting of classical filtering models for multiple integral expansions

(cf. e.g. [39, pp. 12]).

Similarly, in our setup, it is straightforward to give interesting examples satisfying the above

Novikov-type condition. For example, let X be the standard Brownian motion in Rd or a Poisson

process, and let λ be any function of polynomial-order. Then, by the Taylor expansion of the

exponential function and the moment estimates of Brownian motion and Poisson process, we can

check that the above Novikov-type condition is satisfied. Furthermore, by Lévy-Itô decomposition

22

zengy
Highlight



and Itô’s SDEs, the above Novikov-type condition is also satisfied for some more general Lévy

processes and diffusions.

Under the above conditions, we get∫ t

0

EQ,|h|+1[{σ|h|+1
s (|h|)}2]ds = EQ,|h|+1[{σ|h|+1

t (1)}2]− 1 <∞.

Then, {σ|h|+1
t }0≤t≤T satisfies all the conditions of Theorem 4.2. By Theorem 4.2, we obtain the

Poisson chaos expansion of σ
|h|+1
t (1):

σ
|h|+1
t (1) = 1 +

∫ t

0

ν(Tt1 |h|)d(Y |h|+1(t1)− t1)

+

∫ t

0

∫ t1

0

ν(Tt2(|h|Tt1−t2|h|))d(Y |h|+1(t2)− t2)d(Y |h|+1(t1)− t1) + · · · , Q|h|+1-a.s.

Therefore
∞∑
n=1

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

ν2(Ttn(|h|Ttn−1−tn(|h| · · ·Tt1|h|)))dtn · · · dt2dt1 <∞.

Hence (4.12) is satisfied.

5. Poisson Chaos Expansion for the Unnormalized Filter

Density and a Related Recursive Algorithm

In the classical diffusion filtering model, there are a number of papers dealing with multiple

integral expansions of both normalized and unnormalized filters. See, for example, [39, 7, 8,

9]. With applying the established Poisson expansion (4.13) for practical computations in mind,

we consider a time-homogeneous multi-dimensional diffusion signal in Rd. We will derive the

Poisson chaos expansions in two forms (see Theorems 5.1 and 5.2) for the unnormalized filter

density with additional conditions when the observations are MPP. To make the presentation more

transparent, we develop a recursive algorithm for the case with one counting process observation.

The algorithm is the counterpart of that of [37, 38] with MPP observations and can be applied

to more general signals and MPP observations.

5.1 Poisson Chaos Expansion for the Unnormalized Filter Density

Let (Ω,F ,P) be a complete probability space. Suppose that b = (bi)1≤i≤d is a d-dimensional

vector function on Rd, σ = (σij)1≤i≤d,1≤j≤d1 is a d × d1-dimensional matrix function on Rd, and
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B = (Bi)1≤i≤d1 is a d1-dimensional Brownian motion on (Ω,F ,P). The signal (X(t))t≥0 is given

as follows.

X(t) = X(0) +

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dB(s).

The following conditions are assumed:

(i) The functions b and σ are infinitely differentiable and all the derivatives are bounded.

(ii) X(0) is independent of (B(t))t≥0, X(0) has a density p w.r.t. the Lebesgue measure dx

and p is a smooth rapidly decreasing function on Rd.

We consider the filtering model of Section 2. Suppose that (X, Y ) satisfies Assumptions 2.2

- 2.4, X(0) is independent of ξ and, for any u ∈ U , λ(u) is infinitely differentiable and all the

derivatives are bounded on Rd. By (3.4), for f ∈ Bb(Rd), we have

σt(f) = EQ[f(X(t))L(t)|FYt ] = EQ[EQ[L(t)|σ(X(t)) ∨ FYt ]f(X(t))|FYt ].

Let L̃(x,FYt ) be a version of EQ[L(t)|σ(X(t))∨FYt ] at X(t) = x and given the path {Y (s) : 0 ≤
s ≤ t}. Define P (t, A) := P (X(t) ∈ A) for A ∈ B(E). By condition (i) and Fubini’s theorem, we

get

EQ[EQ[L(t)|σ(X(t)) ∨ FYt ]f(X(t))|FYt ] =

∫
E

f(x)L̃(x,FYt )P (t, dx).

By condition (ii), we know that P (t, dx) is absolutely continuous w.r.t. dx. Denote by p(x, t) the

density and define u(t, x) := L̃(x,FYt )p(t, x). Then

σt(f) =

∫
Rd

u(t, x)f(x)dx, ∀f ∈ Bb(Rd), t ≥ 0, x ∈ Rd. (5.1)

u(t, x) is called the unnormalized filtering density function.

We consider the following equation corresponding to the adjoint operator of the generator A:

∂v(t, x)

∂t
=

1

2

d∑
i,j=1

∂2((σσ′)ij(x)v(t, x))

∂xi∂xj
−

d∑
i=1

∂(bi(x)v(t, x))

∂xi
, t > 0,

v(0, x) = ϕ(x). (5.2)

Denote by T ∗t ϕ the solution of (5.2). Let T > 0 be a fixed constant and consider a partition

0 = t0 < t1 < · · · < tM = T of [0, T ]. Denote ∆i = ti − ti−1.

24



Theorem 5.1 In the setup of this section, we have

u(t0, x) = p(x),

u(ti, x) = T ∗t u(ti−1, ·)(x)

+
∑
k≥1

∫ ∆i

0

∫
U

∫ s1

0

∫
U

. . .

∫ sk−1

0

∫
U

T ∗t−s1(λ(u1)− 1) · · ·T ∗sk−1−sk(λ(uk)− 1)T ∗sku(ti−1, ·)))(x)

·(Y (i)(duk, dsk)− µ(duk)dsk) · · · (Y (i)(du2, ds2)− µ(du2)ds2)(Y (i)(du1, ds1)− µ(du1)ds1)

for i = 1, . . . ,M , where Y (i)(·, t) = Y (·, t+ ti−1)− Y (·, ti−1), 0 ≤ t ≤ ∆i.

Proof. Under the conditions of this section, all the assumptions of Theorem 4.5 are fulfilled.

Therefore, the conclusions follow from Theorem 4.5, (5.1) and (5.2).

To simplify notation, for FYti−1
-measurable function g = g(x, ω) and 0 ≤ t ≤ ∆i, we define

F
(i)
0 (t, g)(x) := T ∗t g(x)

F
(i)
k (t, g)(x) :=

∫ t

0

∫
U

∫ s1

0

∫
U

. . .

∫ sk−1

0

∫
U

T ∗t−s1(λ(u1)− 1) · · ·T ∗sk−1−sk(λ(uk)− 1)T ∗sku(ti−1, ·)))(x)

·(Y (i)(duk, dsk)− µ(duk)dsk) · · · (Y (i)(du2, ds2)− µ(du2)ds2)(Y (i)(du1, ds1)− µ(du1)ds1), k ≥ 1.

Then

u(ti, x) =
∑
k≥0

F
(i)
k (∆i, u(ti−1, ·))(x), i = 1, . . . ,M.

Denote by ‖ · ‖0 and (·, ·)0 the norm and the inner product of L2(Rd; dx), respectively. Then,

there exists a constant c > 0 such that (cf. [43])

‖T ∗t ϕ‖0 ≤ ect‖ϕ‖0.

By induction, for every t ∈ [0,∆i], i = 1, . . . ,M and k ≥ 0, the operator g → F
(i)
k (t, g) is linear

and bounded from L2(Ω, Q;L2(Rd; dx)) to itself and

EQ‖F (i)
k (t, g)‖2

0 ≤ ect[(ct)k/k!]EQ‖g‖2
0.

This implies that u(ti, ·) ∈ L2(Rd; dx), Q-a.s.

Theorem 5.2 If {en} is an orthonormal basis in L2(Rd; dx) and random variables ψn(i), n ≥ 0,

i = 0, . . . ,M are defined recursively by

ψn(0) = (p, en)0,

ψn(i) =
∑
k≥0

(∑
l≥0

(F
(i)
k (∆i, el), en)0ψl(i− 1)

)
, i = 1, . . . ,M,
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then

u(ti, ·) =
∑
n≥0

ψn(i)en, P − a.s.

Proof. This is a direct consequence of Theorem 5.1 and induction.

5.2 A Recursive Algorithm for One Counting Process Observation

Now we can use Theorem 5.2 to develop a recursive algorithm for (σt)t≥0. For simplicity, we

assume that d = 1 and U = {1}, i.e., the observation Y = (Y (t))t≥0 is only a Poisson process

with intensity function λ on R. Moreover, we assume that the partition of [0, T ] is uniform, i.e.,

∆i = ∆ for all i = 1, . . . ,M . Let {en} be the Hermite basis in L2(R; dx):

en(x) =
1√

2nπ1/2n!
e−x

2/2Hn(x),

where Hn(x) is the nth Hermite polynomial defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

, n ≥ 0.

Recursive algorithm: Given a κ ∈ N, we define random variables ψn,k(i), n = 0, . . . , κ, i =

0, . . . ,M , by

ψn,κ(0) = (p, en)0,

ψn,κ(i) =
κ∑
l=0

((T ∗∆el, en)0 + (T ∗∆(λ− 1)el, en)0(Y (ti)− Y (ti−1)−∆)

+(1/2)(T ∗∆(λ− 1)2el, en)0((Y (ti)− Y (ti−1)−∆)2 −∆)
)
ψn,κ(i− 1),

i = 1, . . . ,M.

Then, the corresponding approximations to u(ti, x) and σti(f) are

uκ(ti, x) =
κ∑

n=0

ψn,κ(i)en(x)

and

σti,κ(f) =
κ∑

n=0

ψn,κ(i)fn,

where fn :=
∫
R f(x)en(x)dx.
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Remark 5.3 By the well-known L2-isomorphism between the Wiener space and the Poisson

space, we can reproduce the following type of error bounds as given in [37, Theorem 3.1] step by

step:

max
1≤i≤M

√
EQ‖uκ(ti, ·)− u(ti, ·)‖2

0 ≤ c∆ +
c(γ)

κγ−1/2∆

and

max
1≤i≤M

√
EQ|σti,κ(f)− σti(f)|2 ≤ c∆ +

c(γ)

κγ−1/2∆

for any measurable function f on R such that |f(x)| ≤ L(1+ |x|l) for some L > 0 and l > 0. Here

c is a positive constant depending only on the parameters of the model, i.e., b, σ, p and λ, and for

any positive integer γ, c(γ) is a positive constant depending only on γ and the parameters of the

model. Then, by appropriate choice of ∆ and κ, we can make the errors to be arbitrary small.

This shows the consistency of the algorithm.

The above algorithm looks especially promising when the parameters of the model are given.

In this case, the values of (T ∗∆el, en)0, (T ∗∆(λ−1)el, en)0 and (T ∗∆(λ−1)2el, en), n, l = 1, . . . , κ, can

be pre-computed and stored. So only the incorporating of the increments of the observations is

required at each step of updating. This leads to the sizable speed gain in the online computation.

Finally, we would like to point out that the algorithm of this section follows [37], which does

not make use of the polynomial chaos expansion of [36]. As explained in [37, §1], the type of

algorithms adopted in this section is more time-saving since it does not involve evaluation of

the filtering density at many spatial points and the computation of σt(f) does not require its

subsequent evaluation.

6 Conclusions

Motivated by the recent applications in financial econometrics and mathematical finance, we

study the filtering problem with MPP observations via Poisson chaos expansion. We derive the

unnormalized filtering equation under weaker conditions and derive its Poisson chaos expansion.

Based on the expansion, we obtain the uniqueness of solutions of the unnormalized filtering equa-

tion. Moreover, in order to show the possibility of developing numerically efficient approximate

filters based on the chaos expansion, we construct a consistent numerical scheme with desirable

computational advantages for a simple case.

Since such filtering problems arose from optical signal processing, our results may apply in

communication and control theory. On the other hand, since the unnormalized filtering equation
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characterizes the evolution of the likelihood function of the filtering model for financial UHF data

and the numerical scheme can compute the likelihood function, one interesting future work is to

develop the maximum-likelihood inference for the filtering model for UHF data, especially, via

EM algorithm. Since the conditional distribution of X(t) can be obtained by normalizing the

unnormalized filter, we can compute E[X(t)|FYt ] via the constructed approximate unnormalized

filter density. This leads to important applications in mathematical finance problems. For exam-

ple, we can use the computed E[X(t)|FYt ] in determining the risk-minimizing hedging strategy

([34]).

Through the simple example in Section 5, we reveal the possibility of giving efficient algorithms

for computing the approximate filters based on the chaos expansion method. The algorithm can

be extended to the general observations of marked point process and one future work is to conduct

such a more thorough investigation and to provide some numerical examples. Another future work

is to study the higher-order Poisson-Charlier polynomials of the observations in the approximation

of the unnormalized filtering density. The final one is to study the large deviation principle of the

unnormalized filtering equation, which is an SPDE driven by a Poisson random measure. The

recent work [6] may shed light on such study.
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