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Abstract

This chapter surveys the recent developments in a general filtering model with count-
ing process observations for the micromovement of asset price and its related statistical
analysis. Mainly, the Bayesian inference (estimation and model selection) via filtering for
the filtering model. The normalized and un-normalized filtering equations as well as the
system of evolution equations for Bayes factors are reviewed. Markov chain approxima-
tion method is used to construct recursive algorithms and their consistency is proven. We
employ a specific micromovement model built upon the model of LSDE (linear stochastic
differential equation) to show the steps to develop a micromovement model with specific
types of trading noises. The model is further utilized to show the steps to construct
consistent recursive algorithms for computing the trade-by-trade Bayes estimates and
the Bayes factors for model selection. Monte Carlo and real-data examples are provided.
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1 Introduction

1.1 Intuition Behind the Modeling

Existing asset price models can be broadly divided into two groups: macro- and micro-
movement models. Daily, weekly, and monthly closing price behaviors are regarded as
macromovement. Figure 1, the time series plot of the daily closing prices of MicroSoft dur-
ing 1/1/1993 - 3/31/1994, is an example of the macromovement. There were 316 business
dates and there are 316 data. Clearly, the price fluctuates and is usually modeled by either
discrete-time models such as ARIMA or ARCH-type models or continuous-time models such
as GBM (geometric Brownian motion), SV (stochastic volatility), or jump diffusion models
in econometric or mathematical finance literature.

Micromovement refers to trade-by-trade, transactional price behavior. Such data, con-
taining the trading times and prices for all trades, are regarded as UHF (ultra high frequency)
data by Engle [10]. The first stylized fact of UHF data is the trading times or durations (that
is, the inter-trading times) are random 1. Figure 2 plots all the transaction prices of Mi-
croSoft during the same period. There are about 480,000 transaction prices, much more
than the 316 data in the macromovement. First we observe that the overall shapes of these
two plots are the same and this is not surprising because Figure 1 is a daily sub-sample
of Figure 2. This implies that the micromovement model should be closely related to the
macromovement model. Second, we observe that there are much more fluctuations in the mi-
cromovement and by just looking at these two pictures, it is very tempting to conclude that
the micromovement looks even more like a GBM. However, if we cut a small piece of Figure
2 and look through it under a microscope, namely, we plot about one-half day of the prices
in Figure 3, then we clearly see that the price does not move continuously in the state space
as GBM suggests, but moves tick-by-tick or level-by-level. Here, a tick is the minimum price
variation set by trading regulations and was $1/8 dollar at that time. Moreover, Figure 3
clearly shows the second stylized fact of UHF data. Namely, there are trading noises in UHF
prices. Trading noises include discrete noise due to the price discreteness, clustering noise
due to price clustering (more prices were traded at even eighths than at odd eighths), and
non-clustering noise which includes all other noise. The down spike in Figure 3 is an evidence
of the existence of the non-clustering noise. Finally, the topics of the two recent presidential
addresses to the American Finance Association were“noise” (Black [4]) and “friction” (Stoll
[26]). Both are about market microstructure noise. This indicates that noise is an essential
matter in finance and in the modeling of asset price.

By looking at these three pictures, we gain the simple intuition that a micromovement
model should be built upon a macromovement model by incorporating trading noises. In
the other words of economics, the trade-by-trade price is formed from the intrinsic value
process of an asset by combining the market microstructure noises. Also, we can see that
when we deal with macromovement or daily prices, the noises are negligible. However, when
we deal with micromovement or UHF prices, the noises are not negligible anymore. One
representation of the model reviewed in this paper is built upon such intuition. Another
representation comes from Figure 3, where each price level is modeled by a counting process.

1From the viewpoint of time series, econometricians naturally view such data as an irregularly-spaced time
series and Engle [10] develops a general framework under this view with many developments.
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Figure 1:
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Daily Closing Prices of Microsoft, 93.01.01--94.03.31

Figure 2:
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Transaction Data of Microsoft, 93.01.01--94.03.31
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Figure 3:
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1.2 Related Literature on Non-linear Filtering for UHF data

To the best of our knowledge, Frey [14] and Frey and Runggaldier [15] are the first papers
that employ the non-linear filtering technique to model UHF data. Their viewpoint is to
model the unobserved volatility process, which is crucial for option pricing. Their model
is able to capture the Poisson random arrival times in UHF data. Cvitanic, Lipster and
Rozovskii [6] extends the previous model to a more general setting and further allowing
general random times of observation, not just doubly stochastic Poisson processes. Cvitanic,
Rozovskii and Zaliapin [7] numerically implements the filtering procedure and estimates the
unobserved volatility. However, market microstructure noise is missing in these models.

1.3 An Overview of this Chapter

Zeng [30] develops a general filtering micromovement model (FM model, as we simply call
it) for asset price, where both stylized facts of micromovement are taken care of. In the FM
model, there is an unobservable intrinsic value process for an asset, which corresponds to the
macromovement. The intrinsic value process is the permanent component and has a long-
term impact on price. Prices are observed only at random trading times which are driven by
a conditional Poisson process, whose intensity may depend on the intrinsic value. Prices are
distorted observations of the intrinsic value process at the trading times. Market microstruc-
ture noise is explicitly and flexibly modeled by a random transformation with a transition
probability from the intrinsic value to the price at trading time. Noise is the transient com-
ponent and only has a short-term impact (when a trade happens) on price. One important
feature of the FM model is that the model can be framed as a filtering problem with counting
process observations. This connects the model to the filtering literature, which has found
great success in engineering and networking2. Then, the continuous-time likelihoods and pos-
terior not only exist, but also are uniquely characterized, respectively, by the unnormalized

2Early and recent literature on related filtering problems with counting process observations includes, but
not limited to, [27], [28] [8], [25], [21], and [11].
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Duncan-Mortensen-Zakai-like filtering equation and the normalized, Kushner-Stratonovich
(KS) (or Fujisaki-Kallianpur-Kunita)-like filtering equations. The related numerical solution
based on Markov chain approximation method and the Bayes estimation via filtering for the
intrinsic value process and the related parameters in the model are developed. Furthermore,
Kouritzin and Zeng [22] characterizes the continuous-time likelihood ratio and Bayes factors
by a system of evolution equations and develops the Bayesian hypothesis testing or model
selection via filtering for the FM model.

The first aim of this chapter is to survey the general filtering model with counting process
observations for the micromovement of asset price and its related statistical analysis recently
developed in [30] and [22]. The statistical analysis contains Bayesian inference (estimation
and model selection) via filtering for the FM model. We adopt the Bayesian paradigm,
because it offers extra model flexibility as well as the ability to incorporate real prior infor-
mation. The second aim is to give a worked example to help those who wish to carry out a
similar analysis in practice. A specific FM model with LSDE as the intrinsic value process is
built up to show the modeling development technique. This FM model is further employed to
show the steps to carry out Bayes estimation via filtering as well as to compute Bayes factors
for model selection. Namely, we construct recursive algorithms for computing the trade-by-
trade Bayes estimates and Bayes factors. The consistency of the recursive algorithms are
established. We provide simulation results to show the consistency of Bayes estimates and
the effectiveness of Bayes factors for model selection. The recursive algorithms are applied
to an actual Microsoft data set to obtain trade-by-trade Bayes parameter estimates as well
as to implement a simple model selection.

In Section 2, we present the general FM model in three equivalent fashions. In Section 3,
we present the continuous-time Bayesian inference via filtering for the FM model including
the filtering equations and the consistency theorem. In Section 4, we focus on developing a
specific FM model built on LSDE and developing the related recursive algorithms. Simulation
and real-data examples are provided for Bayes estimation and Bayesian model selection.
Section 5 concludes.

2 The General FM Model

The general FM model has three equivalent representations.

2.1 Representation I: Constructing Price from Intrinsic Value

Based on the simple intuition obtained in Section 1.1 that the price is formed from an intrinsic
value by incorporating the noises that arise from the trading activity, we build up the FM
model.

In general, there are three steps in constructing the price process Z from the intrinsic
value process X. First, we specify X. In order to permit time-dependent parameters such
as stochastic volatility and to prepare for parameter estimation, we enlarge the partially-
observed model (X,Y ) to (θ,X, Y ). Assume (θ,X, Y ) is defined in a complete probability
space (Ω,F , P) with a filtration {Ft}0≤t≤∞. Since the macro-movement models are appropri-
ate for the value processes, we invoke below a mild assumption on (θ,X) so that all relevant
stochastic processes are included.
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Assumption 1 (θ,X) is the unique solution of a martingale problem for a generator A such
that for a function f in the domain of A, Mf (t) = f(θ(t),X(t)) −

∫ t

0 Af(θ(s),X(s))ds, is a

Fθ,X
t -martingale, where Fθ,X

t is the σ-algebra generated by (θ(s),X(s))0≤s≤t.

The generator and martingale problem approach (see for example, Ethier and Kurtz [12])
furnishes a powerful tool for the characterization of Markov processes. Assumption 1 includes
all relevant stochastic processes such as diffusion and jump-diffusion processes for modeling
asset price. One examples is given in Section 4.

However, in UHF data, the price can not be observed continuously in time, neither can it
move continuously as GBM suggests. Therefore, two more steps are necessary. Step 2 takes
care of the trading times and Step 3 the trading noise.

In Step 2, we assume trading times t1, t2, . . . , ti, . . ., are driven by a conditional Poisson
process with an intensity a(X(t), θ(t), t). In Step 3, Y (ti), the price at time ti, is corrupted
from X(ti), the intrinsic value , with trading noise. Namely, Y (ti) = F (X(ti)), where
y = F (x) is a random transformation with the transition probability p(y|x), modeling the
trading noise. The random transformation, F (x), is flexible and Section 4.1 constructs one
to accommodate the three observed types of noise in the MicroSoft data: discrete, clustering
and non-clustering.

Under this construction, information affects X(t), the value of an asset, and has a per-
manent influence on the price while noise modeled by F (x) (or p(y|x)) only has a transitory
impact on price. The formulation is similar to the time series VAR structural models used
in many market microstructure papers (see a survey paper [17] by Hasbrouck and a recent
paper [18]). Furthermore, the formulation is closely related the recent two-scale frameworks
incorporating market microstructure noises in literature of realized volatility estimators. See
[34], [1], [2], and [13]. Especially, Li and Mykland in [24] shows that rounding noise in UHF
data may severely distort even the two-scale estimators of realized volatility, and the error
could be infinite.

2.2 Representation II: Filtering with Counting Process Observations

From Figure 3 and because of price discreteness, we can formulate the prices of an asset as
a collection of counting processes in the following form:

~Y (t) =











N1(
∫ t

0 λ1(θ(s),X(s), s)ds)

N2(
∫ t

0 λ2(θ(s),X(s), s)ds)
...

Nn(
∫ t

0 λn(θ(s),X(s), s)ds)











, (1)

where Yj(t) = Nj(
∫ t

0 λj(θ(s),X(s), s)ds) is the counting process recording the cumulative
number of trades that have occurred at the jth price level (denoted by yj) up to time t. We
make four more mild assumptions on the model.

Assumption 2 {Nj}
n
j=1 are unit Poisson processes under measure P.

Then, Yj(t) = Nj(
∫ t

0 λj(θ(s),X(s), s)ds) is conditional Poisson process with the stochastic

intensity, λj(θ(t),X(t), t). Given Fθ,X
t , the filtration of θ and X, Yj(t) has a Poisson dis-
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tribution with parameter
∫ t

0 λj(θ(s),X(s), s)ds. Moreover, Yj(t)−
∫ t

0 λj(θ(s),X(s), s)ds is a

Fθ,X,Y
t - martingale.

Assumption 3 (θ,X), N1, N2, . . . , Nn are independent under measure P.

Let a(θ,X(t), t) be the total trading intensity at time t.

Assumption 4 There exists a positive constant, C, such that 0 ≤ a(θ, x, t) ≤ C for all t > 0
and (θ, x).

The total trading intensity a(θ, x, t), which is bounded by the above assumption, determines
the expected rate of trading at time t. These three assumptions imply that there exists a
reference measure Q and that after a suitable change of measure to Q, (θ,X), Y1, . . . , Yn

become independent, and Y1, Y2, . . . , Yn become unit Poisson processes (Bremaud [5]).

Assumption 5 The intensities are of the form: λj(θ, x, t) = a(θ, x, t)p(yj |x), where p(yj|x)
is the transition probability from x to yj, the jth price level.

This assumption imposes a desirable structure for the intensities of the model. It means
that the total trading intensity a(θ(t),X(t), t) determines when the next trade will occur
and p(yj|X(t)) determines at which price level the next trade will occur given the value is
X(t). Note that p(yj|X(t)) models how the trading noise enters the price process.

Under this representation, (θ(t),X(t)) becomes the signal, which cannot be observed di-
rectly, but can be partially observed through the counting processes, ~Y (t), which is distorted
by trading noise, modeled by p(yj|x). Hence, (θ,X, ~Y ) is framed as a filtering model with
counting process observations.

2.3 An Integral Form of the Price

To solve problems in mathematical finance such as the option pricing and hedging and the
portfolio selection, the stochastic differential or integral equation form of the most recent
price is needed. However, the previous two representations do not provide such a form of
price. That is why a third representation is given below. There are also three steps in
constructing such representation.

Step 1 : We define a random counting measure. Let U = {0, 1
M

, 2
M

, · · · } be a mark space

containing all the possible price levels, and u = j
M

be a generic point in U . Note that M
can be 8, 16, 64, 100, 128 or 256 or others according to the asset. For stock price, the tick size
was 1/8, 1/16 and it is 1/100 of one dollar. For treasure note, the tick sizes are 1/64, 1/128
or 1/256 of one percentage.

For A ∈ U , we define m(A, t) as a random counting measure that counts the cumulative
number of trades whose price levels are in A up to time t. When A = { j

M
}, m({ j

M
}, t) =

Yj(t), which counts the number of trades occurring at the j price level. More generally, we
can express m(A, t) =

∑

u∈A YuM (t).
A random measure is characterized by its compensator. To express the compensator of

m(A, t), we define a counting measure η(A) = number of element in A for A ∈ U . Note
that η has the following two properties: For A ∈ U , η(A) =

∫

IAη(du) and
∫

A
f(u)η(du) =

∑

u∈A f(u).
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Step 2 : We write γm(A, t), the compensator of m(A, t) with respect to FX
t , as

γm(A, t) =

∫ t

0

∫

A

p(u|X(s))a(θ,X(s), s)η(du)ds

=
∑

u∈A

∫ t

0
p(u|X(s))a(θ,X(s), s)ds.

Again, when A = { j
M
},

γm({
j

M
}, t) =

∫ t

0
λj(θ,X(s), s)ds =

∫ t

0
p(

j

M
|X(s))a(θ,X(s), s)ds.

Moreover, we can write

γm(du, dt) = p(u|Xt)a(θ,Xt, t)η(du)dt.

Step 3 : We are in the position to define the integral form needed. Let Y (t) be the price
of the most recent transaction at or before time t. Then,

Y (t) = Y (0) +

∫

[0,t]×U

(u − Y (s−))m(du, ds). (2)

Note that m(du, ds) is zero most of time, and becomes one only at trading time ti with
u = Y (ti), the trading price. The above expression is but a telescoping sum: Y (t) =
Y (0) +

∑

ti<t(Y (ti) − Y (t(i−1))). Alternatively, in differential form,

dY (t) =

∫

U

(u − Y (t−))m(du, dt). (3)

To understand the above differential equation, assuming there is a price change from Y (t−)
to u occurs at time t, then Y (t) − Y (t−) = (u − Y (t−)) implying Y (t) = u.

With the above representation of price, Lee and Zeng [23] studies the option pricing and
hedging through local risk minimizing criterion, and Xiong and Zeng [29] studies the portfolio
selection problem.

2.4 The Equivalence of the Three Representation

In Representation I, the price is constructed from the intrinsic value. In Representation II,
the price process is a collection of counting processes. In Representation III, the SDE form
of the price is given. The following proposition states their equivalence in distribution. This
guarantees the statistical inference based on the second representation is also valid to the
other two.

Proposition 1 The three representations of the model in Sections 2.1, 2.2 and 2.3, respec-
tively, have the same probability law.

The proof of the equivalence of Representations of I and II can be found in [32]. The
intensity structure of Assumption 5 plays an essential role in the equivalence of the two
approaches of modeling. The main idea is to show both marked point processes have the
same stochastic intensity kernel. Similarly, we can show the third one is equivalent with the
first two.
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3 Bayesian Inference via Filtering

This section summarizes the theoretical results of the Bayesian inference via filtering. We
present the statistical foundations for the general FM model, the related filtering equations,
and a convergence theorem. The convergence theorem not only provides a blueprint through
the Markov chain approximation method to construct recursive algorithms, but also en-
sures the consistency of such algorithms, which compute the approximate continuous-time
likelihoods, the posterior, and the Bayes factors.

3.1 The Statistical Foundations

In this section, we study the continuous-time joint likelihood, the likelihood function (from
frequentists’ viewpoint), the integrated likelihood (from Bayesians’ viewpoint), the poste-
rior of the proposed model as well as the continuous-time likelihood ratio and Bayes factors
for model selections. These terminologies are used in statistics. To connect to the termi-
nologies used in the filtering community, the continuous-time joint likelihood corresponds to
the Girsanov-type exponential martingale, the likelihood to the total un-normalized condi-
tional measure, the posterior to the conditional distribution (or the normalized conditional
measure), and the Bayes factors to the total conditional ratio measures. These conditional
measures are characterized by the unnormalized and normalized filtering equations as well
as the system of evolution equations, respectively.

3.1.1 The Continuous-time Joint Likelihood

The probability measure P of (θ,X, ~Y ) can be written as P = Pθ,x × Py|θ,x, where Pθ,x is

the probability measure for (θ,X) such that Mf (t) in Assumption 1 is a Fθ,X
t -martingale,

and Py|θ,x is the conditional probability measure on DRn [0,∞) for ~Y given (θ,X) (where

DRn [0,∞) is the space of right continuous with left limit functions). Under P, ~Y relies on
(θ,X). Recall that there exists a reference measure Q such that under Q, (θ,X), ~Y become
independent, (θ,X) remains the same probability law and Y1, Y2, . . . , Yn become unit Poisson
processes. Therefore, Q can be decomposed as Q = Pθ,x × Qy, where Qy is the probability
measure for n independent unit Poisson processes. One can obtain the Radon-Nikodym
derivative of the model, that is the joint likelihood of (θ,X, ~Y ), L(t), as (see [5] pg 166),

L(t) =
dP

dQ
(t) =

d(Pθ,x × Py|θ,x)

d(Pθ,x × dQy)
(t) =

dPy|θ,x

dQy
(t)

=

n
∏

j=1

exp

{

∫ t

0
log λj(θ(s−),X(s−), s−)dYj(s) −

∫ t

0

[

λj(θ(s),X(s), s) − 1
]

ds

}

.

(4)

or in SDE form:

L(t) = 1 +

n
∑

j=1

∫ t

0

[

λj(θ(s−),X(s−), s−) − 1
]

L(s−)d(Yj(s) − s).
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3.1.2 The Continuous-time Likelihoods of ~Y

It is clear that we can not observe X (and the stochastic components of θ such as stochastic
volatility if exists in the intrinsic value process) and the joint likelihood is not computable.
To do statistical analysis, what we need is the likelihood of ~Y alone. Therefore, we would like
to integrate out X. In the expression of probability, this can be done by using conditional
expectation. Let Yt = σ{(~Y (s))|0 ≤ s ≤ t} be all the available information up to time t. We
use EQ[X] and E[X] to indicate that the expectation is taken with respect to the measures
Q and P, respectively.

Definition 1 Let ρt be the conditional measure of (θ(t),X(t)) given Yt defined as

ρt {(θ(t),X(t)) ∈ A} = EQ
[

I{(θ(t),X(t))∈A}(θ(t),X(t))L(t)|Yt

]

.

Definition 2 Let

ρ(f, t) = EQ[f(θ(t),X(t))L(t)|Yt] =

∫

f(θ, x)ρt(dθ, dx).

If (θ(0),X(0)) is given, then the likelihood of Y is EQ[L(t) | Yt] = ρ(1, t), the total conditional
measure. In a Bayesian framework, a prior is placed on (θ(0),X(0)), and the integrated (or
marginal) likelihood of Y is also ρ(1, t).

3.1.3 The Continuous-time Posterior

Definition 3 Let πt be the conditional distribution of (θ(t),X(t)) given Yt and let

π(f, t) = E[f(θ(t),X(t))|Yt] =

∫

f(θ, x)πt(dθ, dx).

Again, in a Bayesian framework, a prior is placed on (θ(0),X(0)), and πt becomes the
continuous-time posterior, which is determined by π(f, t) for all continuous and bounded
f . Bayes Theorem (see [5], page 171) provides the relationship between ρ(f, t) and π(f, t):
π(f, t) = ρ(f, t)/ρ(1, t). That is, π(f, t) is the normalized conditional measure. Hence, the
equation governing the evolution of ρ(f, t) is called the un-normalized filtering equation, and
that of π(f, t) is called the normalized filtering equation.

3.1.4 Continuous-time Bayes Factors

Given one data set, there are many different models3 to fit the data set. Bayes factor is a
model selection criterion, first developed by Jeffreys [19] in a Bayesian framework. Suppose
there are two models. Bayes factor quantifies the evidence provided by the data in favor of
Model 1 over Model 2. For c = 1, 2, denote Model c by (θ(c),X(c), ~Y (c)). Denote the joint
likelihood of Model c by L(c)(t), as in Equation (4). Denote the un-normalized conditional

measure of Model c as ρc(fc, t) = EQ(c)
[fc(θ

(c)(t),X(c)(t))L(c)(t)|Y
(c)
t ]. Then, the integrated

likelihood of ~Y is ρc(1, t), for Model c.

3Here means different models, not the same model with different representations as described in Section
2.

10



Table 1: Interpretation of Bayes Factor
B21 Evidence against Model 1

1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
> 150 Decisive

Jeffreys [19] defined the Bayes factor of Model 2 over Model 1, B21, as the ratio of inte-
grated likelihoods of Model 2 over Model 1. In our setting, that is, B21(t) = ρ2(1, t)/ρ1(1, t).
Bayes Factors is designed to measure the relative fit of one model vs. another one given the
observed, or in our case partially-observed, data. To select a ‘best’ model among a set of
models, Bayes factor can achieve this goal via pair-wise comparison. When B21 has been cal-
culated, it can be interpreted using Table 1 furnished by Kass and Raftery [20] as guideline.
Similarly, we can define B12, the Bayes factor of Model 1 over Model 2.

In order to characterize the evolution of the Bayes factors, we would like to define two
more conditional measures. Instead of normalizing by its integrated likelihood to obtain
an normalized conditional measure, we let the conditional measure ρc be divided by the
integrated likelihood of the other model. In this way, we define two conditional ratio measures
as below.

Definition 4 For c = 1, 2, let q
(c)
t be the conditional ratio measure of (θ(c)(t),X(c)(t)) given

Y
(c)
t :

q
(c)
t

{

(θ(c)(t),X(c)(t)) ∈ A
}

=
EQ

[

I{(θ(c)(t),X(c)(t))∈A}(θ
(c)(t),X(c)(t))L(c)(t)|Y

(c)
t

]

ρ3−c(1, t)

=EQ
[

I{(θ(c)(t),X(c)(t))∈A}(θ
(c)(t),X(c)(t))L̃(c)(t)|Y

(c)
t

]

where L̃(c)(t) = L(c)(t)/ρ3−c(1, t).

The second equality is because ρc(1, t), c = 1, 2, depend on the same filtration FY (1)
= FY (2)

and ρ3−c(1, t) can be moved inside the conditioning.

Definition 5 Let the conditional ratio processes for f1 and f2 be:

q1(f1, t) =
ρ1(f1, t)

ρ2(1, t)
, and q2(f2, t) =

ρ2(f2, t)

ρ1(1, t)
.

The reason that we define the two conditional ratio measure is given by the observation
that the Bayes factors can be expressed by B12(t) = q1(1, t) and B21(t) = q2(1, t). Moreover,

observe that qc(fc, t) can be written as qc(fc, t) =
∫

fc(θ
(c), x(c))q

(c)
t (dθ(c), dx(c)). The integral

forms of ρ(f, t), π(f, t), and qc(fc, t) are important in deriving the recursive algorithms where
f (or fc) is taken to be a lattice-point indicator function.
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Using Bayes factors for model selection has at least two advantages over the likelihood-
based approaches. First, unlike likelihood-based model selection approaches, a Bayes factor
neither requires the models to be nested, nor does it require the probability measures of the
models to be absolutely continuous with respect to those of the total models in hypotheses.
This feature is important for the model selection of stochastic process, since absolute conti-
nuity is not as common in the probability measures of continuous-time stochastic processes as
those of discrete-time ones. Second, Kass and Raftery [20] show that under some conditions,
Bayes factor ≈ BIC (Bayesian Information Criterion), which penalizes according to both the
number of parameters and the number of data. This suggests that Bayes factor might has
this desirable property also.

3.2 Filtering and Evolution Equations

The stochastic partial differential equations (SPDEs) provide an powerful machinery to char-
acterize the infinite dimensional conditional measures. Similar filtering or related equations
for the related filtering problems with counting process observations can be found, for ex-
ample, in [27], [28], [8], [25] [21], and [11]. The conditional measures, in turn, determine the
continuous-time likelihoods, posteriors, likelihood ratios and Bayes factors. The following
two theorems summarize all the useful SPDEs.

Theorem 1 Suppose that (θ,X, ~Y ) satisfies Assumptions 1 - 5. Then, ρt is the unique
measure-valued solution of the SPDE, the unnormalized filtering equation,

ρ(f, t) = ρ(f, 0) +

∫ t

0
ρ(Af, s)ds +

n
∑

j=1

∫ t

0
ρ((apj − 1)f, s−)d(Yj(s) − s), (5)

for t > 0 and f ∈ D(A), the domain of generator A, where a = a(θ(t),X(t), t), is the trading
intensity, and pj = p(yj |X(t)) is the transition probability from X(t) to yj .

πt is the unique measure-valued solution of the SPDE, the normalized filtering equation,

π(f, t) = π(f, 0) +

∫ t

0
π(Af, s)ds

+

n
∑

j=1

∫ t

0

[π(fapj, s−)

π(apj , s−)
− π(f, s−)

]

d
(

Yj(s) − π(apj , s)s
)

.

(6)

Moreover, when the trading intensity is deterministic, that is, a(θ(t),X(t), t) = a(t), the
normalized filtering equation is simplified as

π(f, t) = π(f, 0) +

∫ t

0
π(Af, s)ds +

n
∑

j=1

∫ t

0

[π(fpj, s−)

π(pj , s−)
− π(f, s−)

]

dYj(s). (7)

In Theorem 1, the unnormalized filtering equation characterizes the evolution of the con-
ditional measure, and its total conditional measure, which is the likelihoods. The normalized
filtering equation characterizes the evolution of the normalized conditional measure, which
is the posteriors in a Bayesian framework.
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Theorem 2 Suppose Model c (c = 1, 2) has generator A(c) for (θ(c),X(c)), the trading inten-

sity ac = ac(θ
(c)(t),X(c)(t), ~Y (c)(t)), and the transition probability p

(c)
j = p(c)(yj|x) from x to

yj for the random transformation F (c). Suppose that (θ(c),X(c), ~Y (c)) satisfies Assumptions

1 - 5. Then,
(

q
(1)
t , q

(2)
t

)

are the unique measure-valued pair solution of the following system
of SPDEs,

q1(f1, t) = q1(f1, 0) +

∫ t

0
q1(A

(1)f1, s)ds

+

n
∑

j=1

∫ t

0

[q1(f1a1p
(1)
j , s−)

q2(a2p
(2)
j , s−)

q2(1, s−) − q1(f1, s−)
]

d
(

Yj(s) −
q2(a2p

(2)
j , s)

q2(1, s)
ds
)

(8)

q2(f2, t) = q2(f2, 0) +

∫ t

0
q2(A

(2)f2, s)ds

+

n
∑

j=1

∫ t

0

[q2(f2a2p
(2)
j , s−)

q1(a1p
(1)
j , s−)

q1(1, s−) − q2(f2, s−)
]

d
(

Yj(s) −
q1(a2p

(2)
j , s)

q1(1, s)
ds
)

(9)

for all t > 0 and fc ∈ D(A(c)) for k = 1, 2. When a1(θ
(1)(t),X(1)(t), t) = a2(θ

(2)(t),X(2)(t), t)
= a(t), the above two equations are simplified to

q1(f1, t) = q1(f1, 0) +

∫ t

0
q1(A

(1)f1, s)ds

+

n
∑

j=1

∫ t

0

[q1(f1p
(1)
j , s−)

q2(p
(2)
j , s−)

q2(1, s−) − q1(f1, s−)
]

dYj(s),

(10)

q2(f2, t) = q2(f2, 0) +

∫ t

0
q2(A

(2)f2, s)ds

+

n
∑

j=1

∫ t

0

[q2(f2p
(2)
j , s−)

q1(p
(1)
j , s−)

q1(1, s−) − q2(f2, s−)
]

dYj(s).

(11)

In Theorem 2, the system of evolution equations for qc(fc, t), c = 1, 2, characterizes the
evolution of the conditional ratio measures and their total measures, namely, the likelihood
ratios or the Bayes factors.

The proof of Theorem 1 is in [30] and that of Theorem 2 is [22]. Note that all the
unsimplified filtering equations are rewritten in the semimartingale form.

Note that a(t) disappears in Equations (7), (10) and (11). This reduces the computa-
tion greatly in computing the Bayes estimates and Bayes factors. The tradeoff of taking
ai independent of (θ(c),X(c)) is that the relationship between trading intensity and other
parameters (such as stochastic volatility) is excluded.

Let the trading times be t1, t2, . . . , then, for example, Equation (7) can be written in two
parts. The first is called the propagation equation, describing the evolution without trades
and the second is called the updating equation, describing the update when a trade occurs.
The propagation equation has no random component and is written as

π(f, ti+1−) = π(f, ti) +

∫ ti+1−

ti

π(Af, s)ds. (12)
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This implies that when there are no trades, the posterior evolves deterministically.
Assume the price at time ti+1 occurs at the jth price level, then the updating equation

is

π(f, ti+1) =
π(fpj, ti+1−)

π(pj , ti+1−)
. (13)

It is random because the price level j, which is the observation, is random. Similarly, the
equations for Bayes factors can be written in such two parts.

3.3 A Convergence Theorem and Recursive Algorithms

Theorems 1 and 2 provide the evolutions of the continuous-time versions, which are all
infinite dimensional. To compute them, one needs to reduce the infinite dimensional problem
to a finite dimensional problem and constructs algorithms based on it. The algorithms,
based on the evolutions of SPDEs, are naturally recursive, handling a datum at a time.
Moreover, the algorithms are easily parallelizable. Thus, the algorithm can make real-time
updates and handle large data sets. One basic requirement for the recursive algorithms is
consistency: The approximate versions, computed by the recursive algorithms, converges to
the true ones. The following theorem proves the consistency of the approximate versions and
provides a blueprint for constructing consistent algorithms through Kushner’s Markov chain
approximation methods.

For c = 1, 2, let (θ
(c)
ǫ ,X

(c)
ǫ ) be an approximation of (θ(c),X(c)). Then, we define

~Y (c)
ǫ (t) =













N
(c)
1 (
∫ t

0 λ1(θ
(c)
ǫ (s),X

(c)
ǫ (s), s)ds)

N
(c)
2 (
∫ t

0 λ2(θ
(c)
ǫ (s),X

(c)
ǫ (s), s)ds)

...

N
(c)
nc (
∫ t

0 λnc(θ
(c)
ǫ (s),X

(c)
ǫ (s), s)ds)













, (14)

set F
~Y

(c)
ǫ

t = σ(~Y
(c)
ǫ (s), 0 ≤ s ≤ t), take L

(c)
ǫ (t) = L

(

(

θ
(c)
ǫ (s),X

(c)
ǫ (s), Y

(c)
ǫ (s)

)

0≤s≤t

)

as in

Equation (4). We use the notation, Xǫ ⇒ X, to mean Xǫ converges weakly to X in the

Skorohod topology as ǫ → 0. Suppose that (θ
(c)
ǫ ,X

(c)
ǫ , ~Y

(c)
ǫ ) lives on (Ω

(c)
ǫ ,F

(c)
ǫ , P

(c)
ǫ ), and

Assumptions 1 - 5 also hold for (θ
(c)
ǫ ,X

(c)
ǫ , ~Y

(c)
ǫ ). Then, there also exists a reference measure

Q
(c)
ǫ with similar properties. Next, we define the approximations of ρc(fc, t), πc(fc, t), and

qc(fc, t).

Definition 6 For c = 1, 2, let

ρǫ,c(fc, t) = EQ
(c)
ǫ

[

fc

(

θ
(c)
ǫ (t),X

(c)
ǫx (t)

)

L
(c)
ǫ (t)|F

~Y
(c)

ǫ
t

]

,

πǫ,c(fc, t) = EP
(c)
ǫ

[

fc

(

θ
(c)
ǫ (t),X

(c)
ǫx (t)

)

|F
~Y

(c)
ǫ

t

]

,

qǫ,1(f1, t) = ρǫ,1(f1, t)/ρǫ,2(1, t) and qǫ,2(f2, t) = ρǫ,2(f2, t)/ρǫ,1(1, t).

Theorem 3 Suppose that Assumptions 1 - 5 hold for the models (θ(c),X(c), ~Y (c))c=1,2

and that Assumptions 1 - 5 hold for the approximate models (θ
(c)
ǫ ,X

(c)
ǫ , ~Y

(c)
ǫ ). Suppose

(θ
(c)
ǫ ,X

(c)
ǫ ) ⇒ (θ(c),X(c)) as ǫ →0.

Then, as ǫ → 0, for all bounded continuous functions, f1 and f2, and c = 1, 2,
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(i) ~Y
(c)
ǫ ⇒ ~Y (c); (ii) ρǫ,c(fc, t) ⇒ ρc(fc, t); (iii) πǫ,c(fc, t) ⇒ πc(fc, t); (iv) qǫ,1(f1, t) ⇒

q1(f1, t) and qǫ,2(f2, t) ⇒ q2(f2, t) simultaneously.

The proofs for (i) and (iii) are in [30] and those for (ii) and (iv) are in [22].
Part (ii) implies the consistency of the integrated likelihood, part (iii) implies the consis-

tency of posterior and part (iv) implies the consistency of the Bayes factors.
This theorem provides a three-step blueprint for constructing a consistent recursive algo-

rithm based on Kushner’s Markov chain approximation method to compute the continuous-
time versions. For example, to compute the posterior and Bayes estimates for a model (then
the superscript, “(c)” is excluded), Step 1 is to construct (θǫ,Xǫ), the Markov chain ap-
proximation to (θ,X), and obtain pǫ,j = p(yj|θǫ, xǫ) as an approximation to pj = p(yj|θ, x),
where (θǫ, xǫ) is restricted to the discrete state space of (θǫ,Xǫ). Step 2 is to obtain the
filtering equation for πǫ(f, t) corresponding to (θǫ,Xǫ, Yǫ, pǫ,j) by applying Theorem 1. For
simplicity, one only considers the case when a = a(t). Recall that the filtering equation for
the approximate model can also be separated into the propagation equation:

πǫ(f, ti+1−) = πǫ(f, ti) +

∫ ti+1−

ti

πǫ(Aǫf, s)ds, (15)

and the updating equation (assuming that a trade at jth price level occurs at time ti+1):

πǫ(f, ti+1) =
πǫ(fpǫ,j, ti+1−)

πǫ(pǫ,j, ti+1−)
. (16)

Step 3 converts Equations (15) and (16) to the recursive algorithm in discrete state space and
in discrete times by two substeps: (a) represents πǫ(·, t) as a finite array with the components
being πǫ(f, t) for lattice-point indicator f and (b) approximates the time integral in (15) with
an Euler scheme.

4 A LSDE FM Model with Simulation and

Empirical Results

We exemplify first how to build a specific FM model and then how to construct the recursive
algorithms for computing the joint posteriors and the Bayes estimates as well as for computing
the Bayes factors. Simulation and real-data examples are provided in the end of this section.

4.1 The LSDE FM Model

Since it is intuitive to construct the model, we do so. Step 1: we specify the intrinsic value
process and its infinitesimal generator. Suppose X(t) follows a LSDE with the SDE given
by

dX(t) = (a + bX(t))dt + (c + dX(t))dB(t). (17)

where B(t) is a standard Brownian Motion, and a, b, c, and d are constants. Conceptually,
this model considers both the stock’s instantaneous rate of return and volatility as linear
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functions of the price instead of constants. LSDE contains GBM, LBM and O-U processes.
Its generator is:

Af(x) = (a + bx)
∂f

∂x
+

1

2
(c + dx)2

∂2f

∂x2
(18)

Step 2: We simply assume the trading times follow a Poisson process with a deterministic
trading intensity, a(t). Then, the simplified normalized filtering equation for posterior and
the evolution equations for Bayes factors can be employed. A time-dependent deterministic
intensity a(t) fits the trade duration data better than the time-invariant one since trading
activities are higher in the opening and the closing periods.

Step 3: We incorporate the trading noises on the intrinsic values at trading times to
produce the price process. There are three important types of noise that have been identified
as we have shown in Figure 3 and have been extensively studied in the finance literature (for
example, see Harris [16]): discrete, clustering, and nonclustering. First, intraday prices move
discretely, resulting in “discrete noise”. Second, because prices do not happen evenly on all
ticks, but more concentrate on integer and half ticks, “price clustering” is obtained. Third,
the “non-clustering noise” contains all other unspecified noise. Let R[·, 1

M
] be the rounding

function to the closest 1
M

. For simple notation, at a trading time ti, let x = X(ti), y = Y (ti),
and y′ = Y ′(ti) = R[X(ti)+ Vi,

1
M

], where Vi is to be defined as the non-clustering noise and
Instead of directly formulating p(y|x), we construct y = F (x) in three steps:

Step (i): Add non-clustering noise V ; x′ = x + V , where V is the non-clustering noise
at trade i. We assume {Vi}, are independent of the value process, and they are i.i.d. with a
doubly geometric distribution:

P{V = v} =

{

(1 − ρ) if v = 0
1
2(1 − ρ)ρM |v| if v = ± 1

M
,± 2

M
, · · ·

.

Step (ii): Incorporate discrete noise by rounding off x′ to its closest tick, y′ = R[x′, 1
M

].
Step (iii): Incorporate clustering noise by biasing y′ through a random biasing function

bi(·) at trade i. {bi(·)} is assumed independent of {y′i}. To be consistent with the Microsoft
data analyzed, we construct a simple random biasing function only for the tick of 1/8 dollar
(i.e. M = 8). For other tick size, it can be done similarly. The data to be fitted has
this clustering occurrence: integers and halves are most likely and have about the same
frequencies; odd quarters are the second most likely and have about the same frequencies;
and odd eighthes are least likely and have about the same frequencies. To generate such
clustering, a random biasing function is constructed based on the following rules: if the
fractional part of y′ is an even eighth, then y stays on y′ with probability one; if the fractional
part of y′ is an odd eighth, then y stays on y′ with probability 1−α−β, y moves to the closest
odd quarter with probability α, and moves to the closest half or integer with probability β.
In brief,

Y (ti) = bi(R[X(ti) + Vi,
1

M
]) = F (X(ti)).

The detail of bi(·), and the explicit p(y|x) for F can be found in Appendix A. Simulations
can demonstrate that the constructed F (x) are able to capture the tick-level sample charac-
teristics of transaction data. For more details see [31].

The parameters of clustering noise, α and β, can be estimated through the method of
relative frequency. The other parameters, a, b, c, d and ρ, are estimated by Bayes estimation
via filtering through the recursive algorithm to be constructed.
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4.2 The Recursive Algorithms for Bayes Estimates and Bayes Factors

We exemplify the three-step blueprint of Markov chain approximation method summarized in
the end of Section 3 to construct the recursive algorithms. Finally, we show the consistency
of the algorithms. For notational simplicity, we use the superscript (c), for c = 1, 2, to

distinguish the two models and let ~θ
(c)
~ǫ = (a

(c)
ǫa , b

(c)
ǫb , c

(c)
ǫc , d

(c)
ǫd , ρ

(c)
ǫρ ) to denote an approximate

discretized parameter signal, which is random in the Bayesian framework.

4.2.1 Step 1: Construct (~θ
(c)
~ǫ

,X
(c)
ǫx )

First, we latticize the parameter spaces of a(c), b(c), c(c), d(c), ρ(c) and the state space of X(c).

Suppose there are n
(c)
a + 1, n

(c)
b + 1, n

(c)
c + 1, n

(c)
d + 1, n

(c)
ρ + 1 and n

(c)
x + 1 lattices in the

latticized spaces of a(c), b(c), c(c), d(c), ρ(c) and X(c) respectively, e.g.

a(c) : [α
(c)
a , β

(c)
a ] → {α

(c)
a , α

(c)
a + ǫ

(c)
a , . . . , α

(c)
a + (n

(c)
a − 1)ǫ

(c)
a , β

(c)
a }

where the number of lattices is n
(c)
a + 1. Define a

(c)
v = α

(c)
a + vǫ

(c)
a , the vth element in the

latticized parameter space of a(c), and define b
(c)
h , c

(c)
l , d

(c)
m , ρ

(c)
r and X

(c)
w similarly. Let

~θ
(c)
~v = (a(c)

v , b
(c)
h , c

(c)
l , d(c)

m , ρ(c)
r )

as where ~v is (v, h, l,m, r).

We construct a birth and death generator A
(c)
ε , such that A

(c)
ε → A(c). Namely, we

construct a birth and death process (~θ
(c)
~ǫ

,X
(c)
ǫx ), a simple example of Markov chain, to ap-

proximate (θ,X(c)(t)) using the generator for the LSDE process.

A(c)
ε fc(~θ

(c)
~v

, x(c)
w )

= (a(c)
v + b

(c)
h x(c)

w )

(

fc(~θ
(c)
~v

, x
(c)
w + ǫ

(c)
x ) − fc(~θ

(c)
~v

, x
(c)
w − ǫ

(c)
x )

2ǫ
(c)
x

)

+
1

2
(c

(c)
l + d(c)

m x(c)
w )2

(

fc(~θ
(c)
~v

, x
(c)
w + ǫ

(c)
x ) + c(~θ

(c)
~v

, x
(c)
w − ǫ

(c)
x ) − 2fc(~θ

(c)
~v

, x
(c)
w )

(ǫ
(c)
x )2

)

= β(c)(~θ
(c)
~v

, x(c)
w )(fc(~θ

(c)
~v

, x(c)
w + ǫ(c)

x ) − fc(~θ
(c)
~v

, x(c)
w ))

+δ(c)(~θ
(c)
~v

, x(c)
w )(fc(~θ

(c)
~v

, x(c)
w − ǫ(c)

x ) − fc(~θ
(c)
~v

, x(c)
w )), (19)

where

β(c)(~θ
(c)
~v

, x(c)
w ) =

1

2

(

(c
(c)
l + d

(c)
m x

(c)
w )2

ǫ2
x

+
a

(c)
v + b

(c)
h x

(c)
w

ǫx

)

,

and

δ(c)(~θ
(c)
~v

, x(c)
w ) =

1

2

(

(c
(c)
l + d

(c)
m x

(c)
w )2

ǫ2
x

−
a

(c)
v + b

(c)
h x

(c)
w

ǫx

)

.

Note that β(c)(~θ
(c)
~v

, xw) and δ(c)(~θ
(c)
~v

, xw) are the birth and death rates, respectively, and
should be nonnegative. If necessary ǫx can be made smaller to ensure the nonnegativity.
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Clearly, A
(c)
ε → A(c) and we have (~θ

(c)
~ǫ

,X
(c)
ǫx ) ⇒ (~θ(c),X(c)) as ε → 0 where ε =

max(ǫa, ǫb, ǫc, ǫd, ǫρ, ǫx).

Now, we have the approximate model (~θ
(c)
~ǫ

,Xǫx(t))(c) of (~θ(c),X(c)(t)). Then, we have

the approximate Y
(c)
ε which is defined by Equation (14). Now the counting process observa-

tions can be viewed as Y (c)(t) defined by Equation (1) or Y
(c)
ε (t) defined by Equation (14)

depending on whether the driving process is (~θ(c),X(c)(t)) or (~θ
(c)
ǫ ,X

(c)
ǫx (t)). When we model

the parameters and the stock value as (~θ(c),X(c)(t)), the counting process observations of
stock price are regarded as Y (c)(t). When we intend to compute the Bayes factors for the

comparison of two models, we use (~θ
(c)
~ǫ

,X
(c)
ǫx (t)) to approach (~θ(c),X(c)(t)) and the counting

process observations of stock price are regarded as Y
(c)
ε (t).

The recursive algorithm is to compute the joint posterior and Bayes estimates and Bayes

factors for the approximate model (~θ
(c)
~ǫ

,X
(c)
ǫx , Y

(c)
ε ), which is close to the joint posterior and

Bayes estimates and Bayes factors of the model (~θ(c),X(c), , Y (c)), by Theorem 3, when ε is
small.

4.2.2 Step 2: Obtain the SPDEs of the Approximate Model

When (~θ(c), ,X(c)) is approximated by (~θ
(c)
~ǫ

,X
(c)
ǫx ), A(c) by A

(c)
ε , and Y by Yε, there accord-

ingly exist probability measures P
(c)
ε and Q

(c)
ε , which approximate P (c) and Q(c). It can be

checked that Assumptions 1 - 5 hold for (~θ
(c)
~ǫ

X
(c)
ǫx , Y

(c)
ε ) for c = 1, 2 satisfying the conditions

of Theorems 1 and 2.
For the posterior, there is one model only and the superscript ”(c)” is omitted. Let

(~θ~ǫ,Xǫx) denote the discretized signal.

Definition 7 Let πε,t be the conditional probability mass function of (~θ~ǫ,Xǫx(t)) on the dis-

crete state space given F
~Yε
t . Let

πε(f, t) = EPε [f(~θ~ǫ,Xǫ(t)) | F
~Yε
t ] =

∑

~θ~v,xw

f(~θ~v, xw)πε,t(~θ~v, xw),

where the summation goes over all lattices in the discretized state spaces.

Then, the normalized filtering equation for the approximate model is given by Equations
(15) and (16).

Next, we approximate the Bayes factors.

Definition 8 Let q
(c)
ǫ,t as a conditional mass finite measure of (~θ~ǫ,Xǫx(t)) on the discrete

state space given F
~Yε
t . q

(c)
ǫ,t approximates q

(c)
t . Let

q(c)
ε (fc, t) =

∑

~θ
(c)
~v

,x
(c)
w

fc(~θ
(c)
~v

, x(c)
w )qε,t(~θ

(c)
~v

, x(c)
w ), (20)

where (~θ
(c)
~v

, x(c)) goes over all the lattices in the approximate state spaces.
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Similarly to the normalized filtering equation, the systems of SPDEs for q
(c)
ε (fc, t) can be

separated into the propagation equation:

q(c)
ε (fc, ti+1−) = q(c)

ε (fc, 0) +

∫ ti+1−

ti

q(c)
ε (A(c)

ε fc, s)ds, (21)

and the updating equation:

q(c)
ε (fc, ti+1) =

q
(c)
ε (fcp

(c)
j , ti+1−)

q
(3−c)
ε (f3−cp

(3−c)
j , ti+1−)

q(3−c)
ε (1, ti+1−). (22)

Together, these two components form the key to deriving the recursive algorithms.

4.2.3 Step 3: Convert to the Recursive Algorithm

First, we convert Equations (15) and (16) to the recursive algorithm for computing the
approximate joint posterior. We show details for how to obtain the algorithm for this one.
For converting Equations (21) and (22) to the recursive algorithm, we only provide the
algorithm for computing the Bayes factor without giving details of derivation. But the
procedure is similar and interested readers are referred to [22].

We define the posterior that the recursive algorithm computes.

Definition 9 The posterior of the approximate model at time t is denoted by

pε(~θ~v, xw; t) = πε,t{~θ~ǫ = ~θ~v,Xǫ(t) = xw }.

Then, there are two substeps. The core of the first substep is to take f as the following
lattice-point indicator function:

I
{~θ~ǫ=~θ~v,Xǫ(t)=xw}

(~θ~ǫ,Xǫ(t)) (23)

Then, the following fact emerges:

πε

(

β(~θ~ǫ,Xǫ(t))I{~θ~ǫ=~θ~v,Xǫ(t)+ǫx=xw}
(~θ~ǫ,Xǫ(t) + ǫx), t

)

= β(~θ~v, xw−1)pε(~θ~v, xw−1; t).

Along with similar results, Equation (15) becomes

pε(~θ~v, xw; ti+1−) = pε(~θ~v, xw; ti) +

∫ ti+1−

ti

(

β(~θ~v, xw−1)pε(~θ~v, xw−1; t)

−(β(~θ~v, xw) + δ(~θ~v, xw))pε(~θ~v, xw; t) + δ(~θ~v , xw+1)pε(~θ~v, xw+1; t)
)

dt,

(24)

If a trade at jth price level occurs at time ti+1, the updating Equation (16) can be written
as,

pε(~θ~v, xw; ti+1) =
pε(~θ~v, xw; ti+1−)p(yj|xw, ρr)

∑

~v′,w′ pε(~θ~v′ , xw′ ; ti+1−)p(yj|xw′ , ρr′)
, (25)

where the summation goes over the total discretized space, and p(yj|xw, ρr), the transition
probability from xw to yj, is specified by Equation (31) in Appendix A.
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In the second substep, we approximate the time integral in Equation (24) with an Eu-
ler scheme to obtain a recursive algorithm further discrete in time. After excluding the
probability-zero event that two or more jumps occur at the same time, there are two possible
cases for the inter-trading time. Case 1, if ti+1 − ti ≤ LL, the length controller in the Euler
scheme, then we approximate p(~θ~v, xw; ti+1−) as

p(~θ~v, xw; ti+1−) ≈ p(~θ~v, xw; ti) +
[

β(~θ~v, xw−1)p(~θ~v, xw−1; ti)

−
(

β(~θ~v, xw) + δ(~θ~v , xw)
)

p(~θ~v, xw; ti) + δ(~θ~v, xw+1)p(~θ~v, xw+1; ti)
]

(ti+1 − ti).
(26)

Case 2, if ti+1−ti > LL, then we can choose a fine partition {ti,0 = ti, ti,1, . . . , ti,n = ti+1}

of [ti, ti+1] such that maxj |ti,j+1 − ti,j| < LL and then approximate p(~θ~v, xl; ti+1−) by
applying repeatedly Equation (26) from ti,0 to ti,1, then ti,2,. . ., until ti,n = ti+1.

Equations (25) and (26) consist of the recursive algorithm we employ to calculate the
approximate posterior at time ti+1 for (~θ,X(ti+1)) based on the posterior at time ti. At
time ti+1, the Bayes estimates of ~θ and X(ti+1) are the expected values of the corresponding
marginal posteriors.

To complete the algorithm for posterior, we choose a reasonable prior. Assume indepen-
dence between X(0) and ~θ. The prior for X(0) can be set by P{X(0) = Y (t1)} = 1 where
Y (t1) is the first trade price of a data set because they are very close. For other parameters,
we can simply take a uniform prior to the discretized state space of ~θ, which is used also for
the algorithm for Bayes factors and in the simulation and the real data example. At t = 0,
we select the prior as below:

p(~θ~v, xw; 0) =

{

1
(1+na)(1+nb)(1+nc)(1+nd)(1+nρ) if xw = Y (t1)

0 otherwise
.

In the rest of this subsection, we briefly present the algorithm for computing the Bayes
factors.

We define the conditional ratio measure that the recursive algorithm computes.

Definition 10 The conditional ratio measure of the approximate model at time t is denoted
by

q(c)
ε (~θ

(c)
~v , x(c)

w ; t) = q
(c)
ε,t {

~θ
(c)
~ǫ = ~θ

(c)
~v ,X(c)

ǫ (t) = x(c)
w }.

Take f (c) as the indicator function

I(c)(~θ
(c)
~v

, x(c)
w ) = I

(c)

{~θ
(c)
~ǫ

=~θ
(c)
~v

,X
(c)
ǫ (t)=x

(c)
w }

(~θ(c)
ǫ ,X(c)

ǫ (t)). (27)

Then,

q(c)
ε (I(c)(~θ

(c)
~v

, x(c)
w ), t) = q(c)

ε (~θ
(c)
~v

, x(c)
w ; t)

Equations (21) and (22) become

q(c)
ε (~θ

(c)
~v , x(c)

w ; ti+1−) ≈ q(c)
ε (~θ

(c)
~v , x(c)

w ; ti)

+
[

β(c)(~θ
(c)
~v , x

(c)
w−1)q

(c)
ε (~θ

(c)
~v , x

(c)
w−1; ti) + δ(c)(~θ

(c)
~v , x

(c)
w+1)q

(c)
ε (~θ

(c)
~v , x

(c)
w+1; ti)
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−(β(c)(~θ
(c)
~v , x(c)

w ) + δ(c)(~θ
(c)
~v , x(c)

w ))q(c)
ε (~θ

(c)
~v , x(c)

w ; ti)
]

(ti+1 − ti) (28)

and
q(c)
ε (~θ

(c)
~v

, x(c)
w ; ti+1) =

q
(c)
ε (~θ

(c)
~v

, x
(c)
w ; ti+1−)p

(c)
j (yj | (x

(c)
w , ρ

(c)
r )

∑

~v′,w′ q
(3−c)
ε (~θ

(3−c)
~v′ , x

(3−c)
w′ ; ti+1−)p

(3−c)
j (yj | (x

(3−c)
w′ , ρ

(3−c)
r′ )

×
(

∑

~v′,w′

q(3−c)
ε (~θ

(3−c)
~v′

, x
(3−c)
w′ , ti+1−)

)

(29)

where the sums go over all the lattices in the discretized state spaces.
Equations (28) and (29) compose the recursive algorithm we employ to calculate the

approximate conditional ratio measures. At time ti+1, the Bayes factor

B21(ti+1) ≈ q(2)
ε (1, ti+1) =

∑

~v′,w′

q(2)
ε (~θ

(2)
~v′

, x
(2)
w′ ; ti+1),

where the sum goes over all the lattices in the discretized state space.
Finally, we note that the statistical and computational concerns for a prior on a param-

eter have two aspects: suitable range and mesh size. Usually, the marginal posterior of a
parameter obtained from a large data set is concentrated on a small area around the true
value. This implies that one needs to run the program several times in order to identify
suitable range and mesh size of parameters for a real world data set. If the true parameter
is out of the range, say, smaller (larger) than the lower (upper) boundary, then the marginal
posterior of this parameter would be one or very close to one on the lower (upper) boundary.
Such indication gives the direction to adjust the range of parameter space of the prior until
no spike on the boundary. After having a suitable range, we may choose a suitable mesh
size, which ideally produces a posterior with a unique modal and bell-shaped distribution as
shown in Table 5.1 of [30]. After obtaining suitable ranges and mesh sizes for both models
in Bayes estimation via filtering, we then employ those suitable ranges and mesh sizes for
the parameters in the computer program for computing Bayes factors in order to obtain the
Bayes factors.

4.2.4 Consistency of the Recursive Algorithms

There are two approximations in our recursive algorithms to compute the posteriors and
Bayes factors. One is to approach the integral in the propagation equations by Euler scheme,
whose convergence is well-known. The other one, which is more important, is the approx-
imation of Equations (7) by Equations (15) and (16), and the approximation of Equations

(10) and (11) by Equations (21) and (22). Since, for c = 1, 2, (~θ~ǫ(c) ,X
(c)
ǫ ) ⇒ (~θ(c),X(c)) by

construction, Theorem 3 warrants these convergence in the sense of the weak convergence in
the Skorohod topology, that is, the consistency of the Bayes factors.

4.3 A Monte Carlo Example

Having constructed the recursive algorithm to compute the Bayes factors, we move on to
develop the software to implement the algorithms. For computing the posterior, a Fortran
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program for the recursive algorithm is developed to compute, at each trading time ti, the
joint posterior of (~θ,X(t)), their marginal posteriors, their Bayes estimates and their standard
errors (SE), respectively. The recursive algorithm is fast enough to generate real-time Bayes
estimates. We test the algorithm extensively and verify it on Monte Carlo data, where we
know the true parameters. Care is required in selecting the lattice of parameter values for
the prior. Ideally, the approximate posterior should resemble a bell-shaped curve. That is,
the posterior should be weighted towards the interior of the lattice, but it should not be
weighted so strongly to any specific point that the relative probability of that lattice point
being the true value is close to 1 (i.e. a bar chart of the relative distribution should be shaped
like a normal or bell-shaped curve, not a single spike at one point). Monte Carlo studies
indicate that the posterior is robust to the prior. Namely, for reasonable priors, as long as
the range covers the true values and the lattices are reasonably fine, the Bayes estimates will
converges to the true values. Below we give one Monte Carlo example with 50,000 data to
show the effectiveness of Bayes estimates. For parameters ~θ, their Bayes estimates converge
to their true values and the two-SE bounds become smaller and smaller, and goes to zero
as in the case of GBM in Zeng [30]. Hence, only the final Bayes estimates, their SE, and
true values are presented in Table 2. The true values are close to the Bayes estimates and
all within two SE bounds.

Table 2: Bayes Estimates for the LSDE FM Model (Simulation)

Parameter True Value Bayes Estimate St. Error

a 3.000E-7 2.951E-7 1.013E-6
b 5.000E-7 4.542E-8 1.001E-6
c 2.000E-3 2.4990E-3 1.001E-3
d 3.000E-6 1.1750E-6 1.074E-6
ρ 2.260E-1 2.247E-1 3.367E-3

The value of parameters are for per second.

Using the same Monte Carlo data, we calculate the Bayes factor of the full LSDE FM
model versus the restricted LSDE FM model with c = 0 (a wrong model) for checking the
effectiveness for model selection. The final Bayes factor is 13,152, which is larger than 150,
the decisive benchmark for rejecting the restricted LSDE FM model.

4.4 Real Data Example

For this example the data used was the Microsoft trade by trade stock prices taken from
January and February 1994 as provided by the TAQ (Trade and Quote) from the NYSE.
After suitable filtering the resulting data used for the estimation was comprised of 49,937
Microsoft trades. The basic summary statistics can be found in Table 3 and the breakdown
of the trades by the fractional portions of the price appears in Table 4.

Again, we note that clustering away from the odd eighths is present in this data. Method
of relative frequency produces the estimations for the clustering parameters: α = .2414 and
β = .3502.
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Table 3: Summary Statistics for MSFT Jan. & Feb. 1994

Size Mean Median St. Dev. Skewness Kurtosis

MSFT 49937 82.465 83.25 1.854 -0.201 -1.446

Table 4: Freq. of the Fractional Parts of the Prices for MSFT Jan. & Feb. 1994

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8

MSFT Freq. 11218 2791 9136 2199 10009 2826 9376 2382
Rel. Freq. .2246 .0559 .183 .044 .2004 .0566 .1878 .0477

We then estimate two models for this data each having a value process with the form of
an LSDE. For the full LSDE model the Bayes estimate for each parameter along with the
associated standard error appear in Table 5. For a restricted model with c = 0, the estimates
are given in Table 6.

Table 5: Bayes Est. for the Full LSDE FM Model (MSFT Jan. & Feb. 1994)

Parameter Bayes Estimate St. Error

a 2.196E-6 1.777E-6
b 9.600E-8 1.001E-6
c -1.6760E-5 5.115E-5
d 6.999E-5 1.002E-6
ρ 4.133E-1 3.150E-3

The value of parameters are for per second.

We then determined the Bayes factors to compare the full model vs. the restricted model
of c = 0. The Bayes factor is 2.90E28, which is much larger than 150 again. So, we reject the
restricted model of c = 0 and conclude the full model fits better than the restricted model
for this Microsoft UHF data set.

5 Conclusion

This chapter reviews recent development of a rich class of filtering models with counting pro-
cess observations for the micromovement of asset price and the related Bayesian inference
via filtering. A specific FM model built upon LSDE is used to exemplify how to develop a
FM model and further exemplify how to develop the recursive algorithms for computing the
posterior and the Bayes factors. The general model and its developed statistical analysis offer
strong potential to relate or illuminate aspects of the rich theoretical literature on market
microstructure and trading mechanism. Furthermore, Bayesian model selection via filtering
provides a general, powerful tool to test related market microstructure theories, represented
by the FM models. We may test whether NASDAQ has less trading noise after a market
reform as in Barclay et al [3], test whether information affects trading intensity as in Easley
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Table 6: Bayes Est. for the Restricted-’c=0’ Case (MSFT Jan. & Feb. 1994)

Parameter Bayes Estimate St. Error

a -5.000E-6 1.008E-6
b 1.999E-7 1.000E-6
d 7.000E-4 1.000E-6
ρ 4.149E-1 8.312E-4

The value of parameters are for per second.

and O’Hara [9] and Engle [10]. Finally, a more general FM model with statistical analysis
can be found in [33].

A Appendix: More on Clustering Noise

To formulate the biasing rule, we first define a classifying function r(·),

r(y) =







3 if the fractional part of y is odd eighth
2 if the fractional part of y is odd quarter
1 if the fractional part of y is a half or zero

. (30)

The biasing rules specify the transition probabilities from y′ to y, p(y|y′). Then, p(y|x),
the transition probability can be computed through p(y|x) =

∑

y′ p(y|y′)p(y′|x) where p(y′|x) =

P{V = y′ − R[x, 1
8 ]}. Suppose D = 8|y − R[x, 1

8 ]|. Then, p(y|x) can be calculated as, for
example, when r(y) = 2,

p(y|x) =







(1 − ρ)(1 + αρ) if r(y) = 2 and D = 0
1
2 (1 − ρ)[ρ + α(2 + ρ2)] if r(y) = 2 and D = 1
1
2 (1 − ρ)ρD−1[ρ + α(1 + ρ2)] if r(y) = 2 and D ≥ 2

. (31)
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