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Macro- and Micro-movements
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Microscopic Picture
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About One-Half Day’s Transaction Data of Microsoft

Two Characteristics of UHF Data

Observations occur at varying random time intervals
Trading (or market microstructure) noises are in price data

Marked Point Process (MPP)

Point process: R.V. {Tn} satisfying Tn ≤ Tn+1.
Mark, Xn: are random elements associated with these times.
Marked Point: (Tn, Xn); MPP: {(Tn, Xn)}.
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An Irregularly-Spaced Time Series

Engle (2000) calls the transaction (tick-by-tick) financial time series
Ultra-High Frequency Data.

Engle (2000) – Date: {(∆ti, yi), i = 1, ..., N} where ∆ti = ti − ti−1.
Log likelihood:

(∆ti, yi)|Fi−1 ∼ f(∆ti, yi|∆̆ti−1, y̆i−1; θ)

where z̆i = {zi, zi−1, ..., z1}.

f(∆ti, yi|∆̆ti−1, y̆i−1; θ) = g(∆ti|∆̆ti−1, y̆i−1; θ)q(yi|∆ti, ∆̆ti−1, y̆i−1; θ) (1)

L(∆, Y ; θ) =
N

∑

i=1

log g(∆ti|∆̆ti−1, y̆i−1; θ) +
N

∑

i=1

log q(yi|∆ti, ∆̆ti−1, y̆i−1; θ)
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Developments within Engle (2000)
Autoregressive Conditional Duration (ACD) model by Engle and

Russell (1998) and logarithmic ACD by Bauwens and Giot
(2000),threshold ACD by Zhang, Russell and Tsay (2001), Asymmetric
ACD by Bauwens and Giot (2003)

Bivariate Point process model by Engle and Lunde (2003), and
Autoregressive Conditional Intensity model by Russell (1999)

Ordered Probit model by Hausman, Lo and Mackinlay (1992)
Autoregressive Conditional Multinomial by Russell (1998),
Activity-Direction-Size model by Rydberg and Shepard (2003), Price
Change Duration model by McCulloch and Tsay (2001)

UHF-GARCH by Engle (2000), ACD-GARCH by Ghysels and Jasiak
(1998)

The Second View:
A Realized Sample Path of MPP: Zeng (2003)
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A Collection of Counting Processes
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~Y (t) =

















N1(
∫ t

0
λ1(θ(s), X(s), s)ds)

N2(
∫ t

0
λ2(θ(s), X(s), s)ds)

...

Nn(
∫ t

0
λn(θ(s), X(s), s)ds)

















, (2)

where Yj(t) = Nj(
∫ t

0
λj(θ(s), X(s), s)ds) records the cumulative # of

trades that have occurred at the jth price level up to time t.
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Assumptions: Model I
Filtering with counting process observations

Assumption 1.1: Markov process, (θ, X), is the solution of a
martingale problem for a generator A such that

Mf (t) = f(θ(t), X(t)) −

∫ t

0

Af(θ(s), X(s))ds

is a Fθ,X
t -martingale. X(t) is the intrinsic value process of an asset.

Assumption 1.2: (N1, . . . , Nn) are unit Poisson processes under
measure P .

Assumption 1.3: (θ, X), N1, . . . , Nn are independent under P .
Assumption 1.4: 0 ≤ a(θ(t), X(t), t) ≤ C for some C > 0 and all

θ(t), X(t), t > 0.
Assumption 1.5: Intensities: λj(θ, x, t) = a(θ, x, t)p(yj |x), where

a(x, θ, t) is the total trading intensity, and pj = p(yj |x) is the transition
probability from x to yj .
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Filtering with MPP Observations
Setup: Mark space: U ; measure space: (U,U , µ), µ: finite measure;

ξ is a Poisson Random Measure (PRM) on U × B[0,∞) × B[0,∞) with
mean measure µ × m × m. For A ∈ U ,

Y (A, t) =

∫

A×[0,t]×[0,+∞)

I[0,λ(θ(s),X(s),V (s),Z(s);u,s)](v)ξ(du × ds × dv),

where Y (A, t) is a counting process recording the cumulative number
of events that have occurred in the set A up to time t.

Ỹ (A, t) = Y (A, t) −

∫

A×[0,t]

λ(θ(s), X(s), V (s), Z(s); u, s)µ(du)ds

is a martingale.

Signal: (θ, X) Observation: (Y, V ) or (Z, V ).
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Assumptions: Model II

Assumption 2.1: is the same as Assumption 1.1, but both θ and X

can be vector processes. Or, (θ, X) is a semimartingale vector process.
Assumption 2.2: ξ is a PRM with the mean measure µ × m × m

under P , where µ is finite measure.
Assumption 2.3: (θ, X) and ξ are independent under measure P.
Assumption 2.4: 0 ≤ a(θ(t), X(t), V (t), Z(t), t) ≤ C for some C > 0

and all possible θ(t), X(t), V (t), Z(t), t.
Assumption 2.5: Stochastic intensity kernel:

λ(θ, x, v, z; u, t−) = a(θ, x, v, z, t−)p(u|x; θ, v, z) (3)

where p(u|x; θ, v, z) = p(u|X(t); θ(t−), V (t−), Z(t−)) is the transition
probability from X(t) to u.

Remark: Note the similarity between Eq.(3) and Eq.(1).
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Random-arrival-time State-Space Model
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Three-Step Construction:
State process: (θ, X) as in Assumption 2.1.
Event times, t1, t2, . . . , ti, . . . follows a conditional Poisson process

with a(θ(t), X(t), V (t), Z(t), t) in Assumption 2.4.
Observation at ti: Z(ti) = F (X(ti); θ(ti), V (ti), Z(ti−1)),

where F (·; · · · ) is a random transformation with the transition probability
p(Z(ti)|X(ti); θ(ti), V (ti), Z(ti−1)) as in Assumption 2.5.
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Examples

Zeng (2003) and its extension to multi-stocks.

Many models under the framework of Engle (2000) such as
Exponential ACD model, UHF-GARCH and more.

Estimating Volatility via filtering: Frey and Runggaldier (2001) and
Cvitanic, Liptser and Rozovskii (2003).

Estimating Markov process sampled at conditional Poisson time:
Duffie and Glenn (2004).

Classical examples of MPP filtering problems in books: Bremaud
(1981), Liptser and Shiryayev (2002, 2nd Ed.), and Last and Brandt
(1995).
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An Integral Form of Price

Let Z(t) be the price of the most recent transaction at or before
time t.

Z(t) = Z(0) +

∫

[0,t]×U

(u − Z(s−))Y (du × ds).

dZ(t) =

∫

U

(u − Z(t−))Y (du × dt).

Remarks :

This is the telescoping sum: Z(t) = Z(0) +
∑

ti≤t(Z(ti) − Z(ti−1).
If there is a price change from Z(t−) to u occurs at time t, then

Z(t) − Z(t−) = (u − Z(t−)) implying Z(t) = u.

This form is essential for the risk minimization hedging (Lee and
Zeng 2006, Model I), and the mean-variance portfolio selection
problem of the model (Xiong and Zeng 2006, Model I).
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Another Example

Intrinsic value process:

dXt

Xt

= µ(θ, Xt, Vt, Zt)dt + σ(θ, Xt, Vt, Zt)dBt

Price:

dZ(t) =

∫

U

(u − Z(t−))Y (du × dt).

where the stochastic intensity kernel for Y (·, ·) at (u, t) is:

λY (u, t−; θ, Xt−, Vt−, Zt−) =

a(θ, Xt−, Vt−, Zt−, t)p(u|θ, Xt−, Vt−, Zt−)

and θ: parameters; and V : other observable factors.
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Joint Likelihood Function

Continuous-time joint likelihood function of (θ, X, Y ):
For Model I,

L(t) =
dP

dQ
(t) =

n
∏

k=1

exp
{

∫ t

0

log λk(θ(s−), X(s−), s−)dYk(s)

−

∫ t

0

[

λk(s) − 1
]

ds
}

.

For Model II,

L(t) = exp

{
∫ t

0

∫

U

log λ(θ(s−), X(s−), V (s−), Z(s−); u, s−)Y (du × ds)

−

∫ t

0

∫

U

[

λ(u, s) − 1
]

µ(du)ds

}
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Why L(t) has this form?

Under P , Ỹ (t): a conditional Poisson; under Q, a unit Poisson process.

L̃(t) =
dP̃

dQ̃
(t) = exp

{∫ t

0

log λ̃(X̃(s−), s−)dỸ (s) −

∫ t

0

[

λ̃(X̃(s), s) − 1
]

ds

}

.

dP̃

dQ̃
(t) =

dP̃/dR

dQ̃/dR

(

P (X = 0) = e−λ, P (X = 1) = e−λλ
)

≈
e
−(

R

t1−h

0
+

P

m−1

i=1

R ti+1−h

ti+
+

R

t

tm+
)λ̃ds

·
∏m

i=1 e
−

R

ti

ti−h
λ̃ds ∫ ti

ti−h
λ̃ds

e−[(t1−h)+
P

m−1

i=1
(ti+1−h−ti)+(t−tm)] ·

∏m
i=1 e−hh

≈e−(
R

t1−h

0
+

P

m−1

i=1

R ti+1−h

ti+
+

R

t

tm+
)(λ̃−1)ds

m
∏

i=1

e−h[λ̃−1]λ̃(X̃(ti−), ti−)

→ exp
{

−

∫ t

0

[λ̃ − 1]ds +

∫ t

0

log λ̃(X̃(s−), s−)dỸ (s)
}
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Likelihoods and Posterior

Define: φ(f, t) = EQ[f(θ(t), X(t))L(t)|FY,V
t ]. Then, φ(1, t) =

EQ[L(t)|FY,V
t ] is the likelihood of Y or the integrated (marginal)

likelihood of Y after assigning a prior to (θ(0), X(0)).

To see this, suppose p(θ, x, y) is the joint density for real R.V. (θ, X, Y )

w.r.t. Lebesgue measure Q′. Then the marginal density of Y is:

pY (y) =

∫ ∫

p(θ, x, y)dθdx = EQ′

[p(θ, X, Y )|Y = y].

Define: πt is the conditional distribution of (θ(t), X(t)) given FY,V
t .

πt becomes the posterior after a prior is assigned.
Define: π(f, t) = EP [f(θ(t), X(t))|FY,V

t ] =
∫

f(θ, x)πt(dθ, dx).

Kallianpur-Striebel (Bayes) Formula gives: π(f, t) = φ(f,t)
φ(1,t) .
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Bayes Factor and Likelihood Ratio
Suppose there are two models: Model 1 and Model 2.
Define:

q1(f1, t) =
φ1(f1, t)

φ2(1, t)
and q2(f2, t) =

φ2(f2, t)

φ1(1, t)

The Bayes Factors: (BF: the ratio of two integrated likelihoods)

BF12 =
φ1(1, t)

φ2(1, t)
= q1(1, t) and BF21 =

φ2(1, t)

φ1(1, t)
= q2(1, t)

Strongly Reject Model 1 if BF21 is larger than 12.
Decisively Reject Model 1 if BF21 is larger than 150.

Advantages: (1) BF do not require the two models to be nested, nor
their distributions to be absolutely continuous w.r.t. each other.
(2) Under some conditions, BF ≈ BIC, which penalizes according to
both the number of parameters and the number of data.
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Filtering Equations
Theorem 1: Under Assumptions 2.1–2.5,

φ(f, t) = φ(f, 0) +

∫ t

0

φ(Af, s)ds −

∫ t

0

∫

U

φ(f(λ(u) − 1), s)µ(du)ds

+

∫ t

0

∫

U

φ(f(λ(u) − 1), s−)Y (du × ds).

and

π(f, t) = π(f, 0) +

∫ t

0

π(Af, s)ds +

∫ t

0

π(f, s)

∫

U

π(λ(u), s)µ(du)ds

−

∫ t

0

∫

U

π(fλ(u), s)µ(du)ds+

∫ t

0

∫

U

[π(fλ(u), s−)

π(λ(u), s−)
−π(f, s−)

]

dY (du×ds)
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Evolution Equations for BF
Theorem 2: Assume Model 1 has (A1, λ1, µ1) and Model 2 has

(A2, λ2, µ2). Both models satisfy Assumptions 2.1–2.5

q1(f1, t) = q1(f1, 0) +

∫ t

0

q1(A1f1, s)ds

+

∫ t

0

q1(f1, s)

q2(1, s)

∫

U

q2(λ2(u), s)µ2(du)ds −

∫ t

0

∫

U

q1(f1λ1(u), s)µ1(du)ds

+

∫ t

0

∫

U

[q1(f1λ1(u), s−)

q2(λ2(u), s−)
q2(1, s−) − q1(f1, s−)

]

dY (du × ds)

and

q2(f2, t) = ...
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A Consistency Theorem

Theorem 3: Suppose that Assumptions 2.1 to 2.5 hold for (θ, X, Y )

and (θǫ, Xǫ, Yǫ). If (θǫ, Xǫ) ⇒ (θ, X) as ǫ→0, then for bounded
continuous functions, f ,
(i) Yǫ ⇒ Y , (ii) φǫ(f, t) ⇒ φ(f, t), (iii) πǫ(f, t) ⇒ π(f, t).
In the two-model case for model selection, then
(iv) qk,ǫ(fk, t) ⇒ qk(fk, t) for k = 1, 2 simultaneously.

Sketch of Proof:
First, use Kurtz and Protter (1991)’s theorem on convergence of

stochastic integral and the Continuous Mapping theorem to prove
Lǫ ⇒ L. Then, ((θǫ, Xǫ), Yǫ, Lǫ) ⇒ ((θ, X), Y, L).

Second, use Goggin (1994)’s or Kouritzin and Zeng (2005)’s
theorems to convergence of conditional expectations and the
Continuous Mapping theorem to prove (ii), (iii) and (iv).
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Markov Chain Approximation Method

Three-Step Construction of Recursive Algorithms – for computing
nearly posterior, integrated likelihood and Bayes factors

For Example, to compute the nearly posterior:
Construct a continuous-time Markov chain (θǫ, Xǫ) to approximate

(θ, X).
Derive the filtering (or evolution) equations for (θǫ, Xǫ, Yǫ).
Convert the equation for (θǫ, Xǫ, Yǫ) to recursive algorithms by

(a) representing πǫ(·, t), for example, as a finite array
with components being πǫ(f, t) for lattice-point indicator f ;
(b) approximating the time integral with an Euler scheme.

University of Chicago Financial Mathematics Seminar, 11/17/2006 – p. 22/37



Two Micromovement Models
Value Processes of the two Micromovement Models

1. GBM: (Zeng 2003)

dXt

Xt

= µdt + σdWt,

Af(x) =
1

2
σ2x2 ∂2

∂x2
f(x) + µx

∂

∂x
f(x).

2. JSV-GBM: (Zeng 2004)

dXt

Xt

= µdt + σ(t)dWt,

dσ(t) = (UN(t) − σ(t−))dN(t)

where N(t) is a Poisson process with intensity λσ and the jump size,
{Ui}, are i.i.d random variables with uniform distribution on [ασ, βσ].
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Noise for the Two Models
Y (ti) = F (X(ti)) = bi(R[X(ti),

1

8
] + Vi)

Discrete noise: R[x, 1
8 ], rounding function.

Non-clustering noise: {Vi}, has a doubly-geometric distribution:

P{V = v} =







(1 − ρ) if v = 0

1
2 (1 − ρ)ρ8|v| if v = ± i

8 for i = 1, 2, 3....
.

Clustering noise: bi(·), a random biasing function
biasing rule: Set y′ = R[X(ti),

1
8 ] + Vi and y = Y (ti) = b(y′).

· If the fractional part of y′ is an even eighth, then y stays on y′ w. p. 1.
· If the fractional part of y′ is an odd eighth, then
y′ moves to the closest odd quarter w.p. α,
or y′ moves to the closest half or integer w.p. β,
or y stays on y′ w.p. 1 − α − β.

Model 1: (µ, σ, ρ, α, β). Model 2: (µ, σ(t), λσ, ρ, α, β).
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Noise Fitting

Simulated Data
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Bayes Estimates I: Simulated Data
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Bayes Estimates II: Simulated Data
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Bayes Est. III: MSFT, Jan/Feb 1994
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Bayes Factor I: Simulated Data
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Bayes Factor II: Simulated Data

Table 1: Bayes Factors for a Simulated Data

Position

before σ 2166 2676 7790 8113 90000

changes

Bayes

Factor: 0.9358 1103.70 1.134e+10 1.255e+10 1.089e+194

B21
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Bayes Factor III: MSFT, Jan/Feb. 1994

Table 2: Summary Statistics for BF21 of the First

Day in MSFT Data

Position NO. of Data Min. Median Mean Max.

1st Quarter 375 0.9133 48.19 104.20 931.30

2nd Quarter 164 28.64 69.40 660.00 11280.00

3rd Quarter 130 2178 7472 67060 584400

4th Quarter 287 24250 41360 75680 297800
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Particle Filtering (or SMC)
Suppose parameters are known. To estimate the value process, X,

Simulate 100 independent sample paths of X following GBM: Vj(t),
j = 1, 2, · · · , 100, at each trading times.

At some time, ti, calculate the importance weight for each Vj :

wj
i (Vj(ti)) = Lj(ti) =

n
∏

k=1

exp

{

∫ ti

ti−1

log λk(Vj(s−), s−)dYk(s)

}

×

n
∏

k=1

exp

{

−

∫ ti

ti−1

[

λk − 1
]

ds

}

.

Resample the sample paths according to the distribution
proportional to the importance weights at times.
Or

Branch each particle to a random number of particles proportional
to the importance weights at times. (Xiong and Zeng 2006)
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Simulation: No Resampling
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Simulation: One Resampling
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Simulation: Resampling Every 100 Trades
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Simulation: Resampling Every 10 Trades
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Conclusions and Future Works
Mathematical finance:

Option pricing and hedging, portfolio optimization, and utility
maximization.

Financial applications on market microstructure theory

Particle filtering or sequential Monte Carlo
Convergence, convergence rate and large deviation

Statistics:
Consistency, CLT for the estimators of parameters.

To allow long-range dependence by using fractional signal.

Related papers, real data, Fortran codes are available at
http://mendota.umkc.edu/paper-tick.html
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