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UHF Data and Marked Poisson Process

Two Characteristics of UHF Data
Observations occur at varying random time intervals
Market microstructure noises (frictions) are in price data

Marked Point Process and Marked Poisson Process
Marked Point Process: {(Tn, Xn)}, where {Tn} increasing, i.e.

Tn ≤ Tn+1.
Marked Poisson Process: {(Tn, Xn)} with {Tn} from a conditional

Poisson Process (or Cox process, or doubly stochastic Poisson).
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Durations or Inter-trading Times
Duration of Trade for MSFT (Jan. & Feb. 1994)
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An Irregularly-Spaced Time Series

Engle (2000) – Data: {(∆ti, yi), i = 1, ..., N} where ∆ti = ti − ti−1.

Conditional density:

(∆ti, yi)|Fi−1 ∼ f(∆ti, yi|∆̆ti−1, y̆i−1; θ)

where z̆i = {zi, zi−1, ..., z1}.

f(∆ti, yi|∆̆ti−1, y̆i−1; θ) = g(∆ti|∆̆ti−1, y̆i−1; θ)q(yi|∆ti, ∆̆ti−1, y̆i−1; θ) (1)

Log likelihood:

l(∆, Y ; θ) =

N
∑

i=1

log g(∆ti|∆̆ti−1, y̆i−1; θ) +

N
∑

i=1

log q(yi|∆ti, ∆̆ti−1, y̆i−1; θ)
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Related Developments

Autoregressive Conditional Duration (ACD) model by Engle and
Russell (1998), and logarithmic ACD by Bauwens and Giot (2000),
threshold ACD by Zhang, Russell and Tsay (2001), Asymmetric ACD
by Bauwens and Giot (2003)

Ordered Probit model by Hausman, Lo and Mackinlay (1992), Price
Change Duration model by McCulloch and Tsay (2001), Activity
-Direction -Size model by Rydberg and Shepherd (2003),
Autoregressive Conditional Multinomial- ACD by Russell and Engle
(2005)

Bivariate Point process model by Engle and Lunde (2003), and
Autoregressive Conditional Intensity model by Russell (1999)

UHF-GARCH by Engle (2000), ACD-GARCH by Ghysels and Jasiak
(1998), Engle and Zheng (2007)

The Second View:
A Realized Sample Path of MPP: Zeng (2003)
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Construction of Price from Value

Three-Step Construction:
Intrinsic value process: X(t)

Assumption 1.1: Markov process, (θ, X), is the solution of a
martingale problem for a generator A such that

Mf (t) = f(θ(t), X(t)) −
∫ t

0
Af(θ(s), X(s))ds

is a Fθ,X
t -martingale.

Trading times: t1, t2, . . . , ti, . . . follows a conditional Poisson process
with a(θ(t), X(t), t).

Price at ti: Z(ti) = F (X(ti)) = bi

(

R[X(ti) + Vi,
1
M

]
)

where F , a random transformation modeling market microstructure
noise, is specified by the transition probability p(Z(ti)|X(ti); θ).

Remark: Closely related to (1) the structure models in Hasbrouck
(1996) and (2) the TS Models for RV in ZMA (2005), Bandi and Russell
(2006), Fan and Wang (2007), Li and Mykland (2007) and others.
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Price Clustering in Treasury Notes
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A Collection of Counting Processes
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A Collection of Counting Processes
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





, (3)

where Yj(t) = Nj(
∫ t

0
λj(θ(s), X(s), s)ds) records the cumulative # of

trades that have occurred at the jth price level up to time t.
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Other Assumptions of Model I

Filtering with counting process observations
Assumption 1.2: (N1, . . . , Nn) are unit Poisson processes under

measure P .
Assumption 1.3: (θ, X), N1, . . . , Nn are independent under P .
Assumption 1.4: 0 ≤ a(θ(t), X(t), t) ≤ C for some C > 0 and all

θ(t), X(t), t > 0.
Assumption 1.5: Intensities: λj(θ, x, t) = a(θ, x, t)p(yj |x), where

a(x, θ, t) is the total trading intensity, and pj = p(yj |x) is the transition
probability from x to yj .

Signal: (θ, X) Observation: ~Y or Z.
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Price and Order Flow
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Price and Economic Announcements
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A Motivating Example

Vt: observable variable such as economic news, signed order flow,
signed trade and others in Treasury market.

Intrinsic value process:

dXt

Xt

= (µ + κµVt)dt + (σ + κσVt)dBt

Trading intensity: a(V t, Zt, t) is non-anticipating, where
V t(·) = V (· ∧ t). E.g. a(V (ti−1), Z(ti−1), ∆i−1, t) for ti−1 ≤ t < ti.
This allows Exponential ACD Model.

Price at time ti:

Z(ti) = F (X(ti))

where F is a random transformation specified by a non-anticipating
transition probability p(Z(ti)|X(ti); θ

ti−, Xti−, Zti−, V ti−, ).
E.g. p(Z(ti)|X(ti); θ, Z(ti−1) − X(ti−1)).
This further allows serial dependent microstructure noise.
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Random-arrival-time State-Space Model

Three-Step Construction:
State process: X(t).

Assumption 2.1: is the same as Assumption 1.1, but both θ and X

can be vector processes, and Mf (t) is a Fθ,X,V
t -martingale.

Event times: t1, t2, . . . , ti, . . . follows a conditional Poisson process
with a non-anticipating intensity a(θt, Xt, V t, Zt, t).

Observation at ti:

Z(ti) = F (X(ti))

where F is a random transformation with the non-anticipating transition
probability p(Z(ti)|X(ti); θ

ti−, Xti−, V ti−, Zti−, t)).
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Filtering with MPP Observations

Setup: Mark space: U ; measure space: (U,U , µ), µ: finite measure;
ξ is a Poisson Random Measure (PRM) on U × B[0,∞) × B[0,∞) with
mean measure µ × m × m. For A ∈ U ,

Y (A, t) =

∫

A×[0,t]×[0,+∞)

I[0,λ(θs,Xs,V s,Zs;u,s)](v)ξ(du × ds × dv),

where Y (A, t) is a counting process recording the cumulative number
of events that have occurred in the set A up to time t.

Ỹ (A, t) = Y (A, t) −
∫

A×[0,t]

λ(θs, Xs, V s, Zs; u, s)µ(du)ds

is a martingale.

Signal: (θ, X) Observation: (Y, V ) or (Z, V ).
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The Reference Measure

Under the reference measure Q, For A ∈ U ,

Y (A, t) =

∫

A×[0,t]×[0,+∞)

I[0,1](v)ξ(du × ds × dv),

where Y (A, t) is a counting process recording the cumulative number
of events that have occurred in the set A up to time t.

Ỹ (A, t) = Y (A, t) −
∫

A×[0,t]

µ(du)ds = Y (A, t) − µ(A)t

is a martingale.

For Model I: U = {1, 2, · · · , n}, A = j and V and Z are not in the
intensity,
Under P, Y (A, t) = Y (j, t) = Nj(

∫ t

0
λj(θ(s), X(s), s)ds).

Under Q, Y (A, t) = Y (j, t) = Yj(t) is a unit Poisson process.
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Other Assumptions of Model II

Assumption 2.2: ξ is a PRM with the mean measure µ × m × m

under P , where µ is finite measure.
Assumption 2.3: (θ, X) and ξ are independent under measure P.
Assumption 2.4: 0 ≤ a(θt, Xt, V t, Zt, t) ≤ C for some C > 0 and all

possible θt, Xt, V t, Zt, t.
Assumption 2.5: Stochastic intensity kernel (non-anticipating):

λ(θt−, xt−, vt−, zt−; u, t−) = a(θt−, xt−, vt−, zt−, t−)p(u|x; θt−, xt−, vt−, zt−)

(4)

where p(u|x; θt−, xt−, vt−, zt−)) is the transition probability from X(t) to
u.

Remark: Note the similarity between Eq.(4) and Eq.(1).
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Examples I

Group I: without continuous-time latent Xt

U = {1}: Cox process and Exponential ACD model (Engle and
Russell 1998).

U = { a
M

, a+1
M

, · · · , b
M
}, or R, or R+: UHF-GARCH model and many

previously reviewed models under the framework of Engle (2000).

Group II: with latent Xt not depending on V

Zeng (2003) and its extension to multi-stocks (Scott and Zeng 2008).
Estimating Volatility via filtering: Frey and Runggaldier (2001),

Cvitanic, Liptser and Rozovskii (2006), Ceci and Gerardi (2007a,b).
Estimating Markov process sampled at conditional Poisson time:

Duffie and Glenn (2004).
Classical examples: Segall, Davis and Kailath (1975), Bremaud

(1981), Liptser and Shiryayev (1978), Kliemann, Koch and Marchetti
(1990), and Last and Brandt (1995).
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Examples II

Group III: with latent Xt depending on V

Vt can change at random times (such as trading time) or
deterministic times (such as every 5 minutes or every day).

Vt can takes values such as ±1 for the indicator of buyer or seller
initiating trade; or 0 or 1 for the indicator of a special period; or other
values such as order flow or a function of order flow.

When Xt is GBM, Vt can be added in instantaneous expected return,
or instantaneous volatility, or in the trading noise. Or find the “best"
f(Vt) for the model.

Xt can be O-U process; CIR model; CES model; SV models; plus
jumps; plus regime-switching; with spikes; α-stable process; and
others. Then, Vt can be added in the related parameters with different
economic interpretations.

Z can be trading prices or ask and bid quotes.
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An Integral Form of Price

Let Z(t) be the price of the most recent transaction at or before
time t.

Z(t) = Z(0) +

∫

[0,t]×U

(u − Z(s−))Y (du × ds).

Remarks :

This is the telescoping sum: Z(t) = Z(0) +
∑

ti≤t(Z(ti) − Z(ti−1).
This form is similar to that of Skorohod (1989) for continuous time
Markov chain.

This form is essential for the risk minimization hedging (Lee and
Zeng 2006, for Model I), and the mean-variance portfolio selection
problem of the model (Xiong and Zeng 2007, for Model I).
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Joint Likelihood Function

Continuous-time joint likelihood function of (θ, X, Y ):
For Model I,

L(t) =
dP

dQ
(t) = exp

{

n
∑

k=1

∫ t

0

log λk(θ(s−), X(s−), s−)dYk(s)

−
n

∑

k=1

∫ t

0

[

λk(θ(s−), X(s−), s)− 1
]

ds
}

.

For Model II,

L(t) = exp

{∫ t

0

∫

U

log λ(θs−, Xs−, V s−, Zs−; u, s−)Y (du × ds)

−
∫ t

0

∫

U

[

λ(θs−, Xs−, V s−, Zs−; u, s) − 1
]

µ(du)ds

}
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Likelihoods and Posterior

Define: φ(f, t) = EQ[f(θ(t), X(t))L(t)|FY,V
t ]. Then, φ(1, t) =

EQ[L(t)|FY,V
t ] is the likelihood of Y or the integrated (marginal)

likelihood of Y after assigning a prior to (θ(0), X(0)).

Define: πt is the conditional distribution of (θ(t), X(t)) given FY,V
t .

πt becomes the posterior after a prior is assigned.
Define: π(f, t) = EP [f(θ(t), X(t))|FY,V

t ] =
∫

f(θ, x)πt(dθ, dx).

Bayes theorem gives:

π(f, t) =
φ(f, t)

φ(1, t)
.

SPDE for φt – unnormalized filtering equation
SPDE for πt – normalized filtering equation
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Bayes Factor and Likelihood Ratio

Suppose there are two models: Model 1 and Model 2.
Define: two conditional ratio processes:

q1(f1, t) =
φ1(f1, t)

φ2(1, t)
and q2(f2, t) =

φ2(f2, t)

φ1(1, t)

The Bayes Factors: (BF: the ratio of two integrated likelihoods)

BF12 =
φ1(1, t)

φ2(1, t)
= q1(1, t) and BF21 =

φ2(1, t)

φ1(1, t)
= q2(1, t)

Strongly Reject Model 1 if BF21 is larger than 20.
Decisively Reject Model 1 if BF21 is larger than 150.
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Unnormalized Filtering Equation

Theorem 1: (Zeng 2003, for Model I) Under Assumptions 2.1–2.5,
φt is the unique measure-valued solution of the following SPDE, called
the unnormalized filtering equation:

φ(f, t) = φ(f, 0) +

∫ t

0

φ(Af, s)ds −
∫ t

0

∫

U

φ(f(λ(u) − 1), s)µ(du)ds

+

∫ t

0

∫

U

φ(f(λ(u) − 1), s−)Y (du × ds),

for every t > 0 and f ∈ D(A).
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Normalized Filtering Equation

Theorem 1: (continued) πt is the unique measure-valued solution of
the following SPDE, called the normalized filtering equation:

π(f, t) = π(f, 0) +

∫ t

0

π(Af, s)ds +

∫ t

0

π(f, s)

∫

U

π(λ(u), s)µ(du)ds

−
∫ t

0

∫

U

π(fλ(u), s)µ(du)ds+

∫ t

0

∫

U

[π(fλ(u), s−)

π(λ(u), s−)
−π(f, s−)

]

dY (du×ds)

Remark: When a(θt, Xt, V t, Zt, t) = a(V t, Zt, t) (including the case of
EACD model), it can be simplified as:

π(f, t) = π(f, 0)+

∫ t

0

π(Af, s)ds+

∫ t

0

∫

U

[π(fp(u), s−)

π(p(u), s−)
−π(f, s−)

]

dY (du×ds)

where p(u) = p(u|X(t); θt, Xt, V t, Zt, t) allowing dependent noise.
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Evolution Equations for BF

Theorem 2: (Kouritzin and Zeng 2005, for Model I) Assume Model 1
has (A1, λ1, µ1) and Model 2 has (A2, λ2, µ2). Both models satisfy
Assumptions 2.1–2.5. Then, (q1,t, q2,t) is the unique pair
measure-valued solution of the following system of SPDEs,

q1(f1, t) = q1(f1, 0) +

∫ t

0

q1(A1f1, s)ds

+

∫ t

0

q1(f1, s)

q2(1, s)

∫

U

q2(λ2(u), s)µ2(du)ds −
∫ t

0

∫

U

q1(f1λ1(u), s)µ1(du)ds

+

∫ t

0

∫

U

[q1(f1λ1(u), s−)

q2(λ2(u), s−)
q2(1, s−) − q1(f1, s−)

]

dY (du × ds)

and

q2(f2, t) = ...
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A Consistency Theorem

Theorem 3: (Zeng 2003, and Kouritzin and Zeng 2005, for Model I)
Suppose that Assumptions 2.1 to 2.5 hold for (θ, X, Y ) and (θǫ, Xǫ, Yǫ).
If (θǫ, Xǫ) ⇒ (θ, X) as ǫ→0, then for bounded continuous functions, f ,
(i) Yǫ ⇒ Y , (ii) φǫ(f, t) ⇒ φ(f, t), (iii) πǫ(f, t) ⇒ π(f, t).
In the two-model case for model selection, then
(iv) qk,ǫ(fk, t) ⇒ qk(fk, t) for k = 1, 2 simultaneously.

Sketch of Proof:
First, use Kurtz and Protter (1991)’s theorem on convergence of

stochastic integral and the Continuous Mapping theorem to prove
Lǫ ⇒ L. Then, ((θǫ, Xǫ), Yǫ, Lǫ) ⇒ ((θ, X), Y, L).

Second, use Goggin (1994)’s or Kouritzin and Zeng (2005)’s
theorems on convergence of conditional expectations and the
Continuous Mapping theorem to prove (ii), (iii) and (iv).
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Markov Chain Approximation Method

Construction of Parallel Recursive Online Algorithms –
for computing nearly posterior, integrated likelihood and Bayes factors

For Example, to compute the nearly posterior: Three Steps:
Construct a Markov chain (θǫ, Xǫ) to approximate (θ, X).
Derive the filtering (or evolution) equations for (θǫ, Xǫ, Yǫ).

Propagation Equation:

πε(f, ti+1−) = πε(f, ti) +
∫ ti+1−

ti

πε(Aεf, s)ds.

Updating Equation:

πε(f, ti+1) = πε(fp(u),ti+1−)
πε(p(u),ti+1−)

Convert the equation for (θǫ, Xǫ, Yǫ) to recursive algorithms by
(a) representing πǫ(·, t), for example, as a finite array
with components being πǫ(f, t) for lattice-point indicator f ;
(b) approximating the time integral with an Euler scheme.
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Two FM Models for Stock Price

Value Processes of the two Filtering Micromovement (FM) Models
1. GBM: (Zeng 2003)

dXt

Xt

= µdt + σdWt,

Af(x) =
1

2
σ2x2 ∂2

∂x2
f(x) + µx

∂

∂x
f(x).

2. JSV-GBM: (Zeng 2004)

dXt

Xt

= µdt + σ(t)dWt,

dσ(t) = (UN(t) − σ(t−))dN(t)

where N(t) is a Poisson process with intensity λσ and the jump size,
{Ui}, are i.i.d random variables with uniform distribution on [ασ, βσ].
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Noise for the Models

Y (ti) = F (X(ti)) = bi(R[X(ti),
1

M
] + Di)

Discrete noise: R[x, 1
M

], rounding function, where M = 8, 64, 128.
Non-clustering noise: {Di}, has a doubly-geometric distribution:

P{D = d} =







1 − (ρ + κρv) if d = 0

1
2 [1 − (ρ + κρv)](ρ + κρv)64|d| if d = ± i

M
for i = 1, 2, 3....

.

Clustering noise: bi(·), a random biasing function
biasing rule: Set y′ = R[X(ti),

1
M

] + Di and y = Y (ti) = b(y′).
· If fractional part of y′ is an even M th, y stays on y′ w. p. 1.
· If the fractional part of y′ is an odd M th, then
y′ moves to the closest M/2th w.p. α,
or y′ moves to the closest odd M/4th or integer w.p. β,
or y stays on y′ w.p. 1 − α − β.

Parameters in the Model : (µ, σ, ρ, κµ, κσ, κρ, α, β).
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Consistency of Bayes Estimates (I)

Theorem 4: (Zeng 2003) For the simple filtering model (I) of GBM,
assume that the clustering parameters (α, β) are known, and (µ, σ, ρ)

has a prior. Then, the Bayes estimates are consistent almost surely.
Namely, E[f(µ, σ, ρ)|FZ

t ] → f(µ, σ, ρ) as t → ∞ for bounded continuous
function f when µ − 1

2σ2 > 0.

Remark: The standard condition “µ − 1
2σ2 > 0" rules out bankruptcy.
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Bayes Estimates: Simulated Data I
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Bayes Estimates II: Simulated Data
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Bayes Factor: Simulated Data
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One FM Model for Treasury UHF Data

(Joint with D. Kuipers (UMKC, Finance) and X. Hu (Princeton, Econ))
Intrinsic value process:

dXt

Xt

= µdt + (σ + κσVt)dBt

Generator: θ = (µ, σ, κσ, ρ, κρ)

Avf(x, θ) = µx
∂

∂x
f(θ, x) +

1

2
(σ + κσv)2x2 ∂2

∂x2
f(θ, x).

where (1) Vt is the indicator of buyer (+1) or seller (-1) initiating;
(2) Vt is signed sqrt(Vol) with sign +(-) when buyer(seller) initiating;
(3) Vt is 1 when t is in a a specific time interval, otherwise 0.

Trading intensity: a(V t, Zt, t) independent of Xt can be modeled by
an Exponential ACD Model.
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Consistency of Bayes Estimates (II)

Theorem 5: For the above simple filtering model (III) of GBM with
regression factors, assume that Vt = ±1 has infinite non-alternating ±1

and the clustering parameters (α, β) are known, and
θ = (µ, σ, ρ, κµ, κσ, κρ) has a prior. Then, the Bayes estimates are
consistent almost surely. Namely, E[f(θ)|FZ

t ] → f(θ) as t → ∞ for
bounded continuous function f when µ − 1

2 (σ + κσ)2 > 0.

Remark: The standard condition “µ − 1
2 (σ + κσ)2 > 0" rules out

bankruptcy.
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Estimation Results: Cases (1) and (2)

Table 1: Annualized Bayes estimates for 10yr.

Treasury UHF Data, 8/15/-12/31, 2000

Models µ σ ρ κσ κρ

Case I: 34.48% 4.92% 0.0503 -0.29% -0.0109

Vt = ±1 (4.27%) (0.05%) (0.0045) (0.04%) (.0045)

Case II: 28.64% 4.94% 0.0486 -0.10% n.a.

Vt = ±
√

V ol (8.17%) (0.05%) (0.0044) (0.03%) n.a.
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Simulated Data: Case (3)
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Bayes Est. for simulated data: Case (3)

Table 2: Bayes estimates for 2050 simulated data

when 50 data have extra volatility,

Models µ σ ρ κσ

True 5.00E-8 2.00E-5 0.05 3.00E-5

Bayes Est. 4.27E-8 2.00E-5 0.0477 2.86E-5

(1.08E-8) (2.89E-14) (0.0056) (6.58E-6)
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Real Data: FOMC Period I
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Real Data: FOMC Period II

Time Series for Aug 22nd
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Bayes Est. for Treasury data: Case (3)

Table 3: Bayes estimates for August 17 - 30, 2000,

5yr notes

Models µ σ ρ κσ

Bayes Est. 8.51% 1.68% 0.022 1.93

(7.21%) (0.08%) (0.0054) (0.58%)

(1247 data with 40 marking V=1, for 12-3pm of August 22 when FOMC
announcement time is around 2pm)

These results are consistent with Fleming and Remolona (1999),
Green (2004) and Brandt and Kavacejz (2004): Primary impact:
Economic News; Secondary impact: order flow and liquidity.
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Price and Economic Announcements
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Bayes Est. (I) for Treasury data: Case (3)

Data µ σ ρ κσ

2yr: 7/2000 0.26% 0.93% 0.0054 3.32%

(0.10%) (0.03%) (0.0073) (0.16%)

2yr: 8/2000 0.06% 0.74% 0.0008 1.41%

(0.05%) (0.03%) (0.0003) (0.15%)

2yr: 9/2000 0.06% 1.04% 0.0014 2.16%

(0.01%) (0.02%) (0.0002) (0.29%)

2yr: 10/2000 0.09% 1.49% 0.0011 1.53%

(0.02%) (0.03%) (0.0003) (0.16%)

2yr: 11/2000 0.09% 0.99% 0.0009 1.95%

(0.02%) (0.03%) (0.0001) (0.30%)
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Bayes Est. (II) for Treasury data: Case (3)

Data µ σ ρ κσ

2yr: 12/2000 0.12% 1.50% 0.0001 1.31%

(0.04%) (0.03%) (0.0001) (0.27%)

5yr: 7/1 - 11/16/2000 2.78% 2.71% 0.0204 4.19%

(1.86%) (0.03%) (0.0029) (0.03%)

5yr: 11/17 - 12/31/2000 27.66% 3.37% 0.0008 4.96%

(4.62%) (0.03%) (0.0006) (0.69%)

10yr: 7/1 - 8/12/2000 11.82% 4.81% 0.0276 8.60%

(9.01%) (0.14%) (0.0051) (0.16%)

10yr: 8/15 - 12/31/2000 13.77% 4.86% 0.0479 4.03%

(7.33%) (0.05%) (0.0044) (0.30%)
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Conclusions and Future Works

Financial applications on market microstructure theory

Statistics and information theory:
Consistency, CLT for the estimators of parameters.
Mutual information and its rate and its applications

Mathematical finance:
Option pricing and hedging, portfolio optimization, and utility

maximization.

Particle filtering or sequential Monte Carlo
Convergence, convergence rate and large deviation

To allow long-range dependence by using fractional signal.

Related papers, real data examples, Fortran codes are available at
http://mendota.umkc.edu/paper-tick.html
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Particle Filtering (or SMC)

Suppose parameters are known. To estimate the value process, X,
Simulate 100 independent sample paths of X following GBM: Vj(t),

j = 1, 2, · · · , 100, at each trading times.
At some time, ti, calculate the importance weight for each Vj :

wj
i (Vj(ti)) = Lj(ti) =

n
∏

k=1

exp

{

∫ ti

ti−1

log λk(Vj(s−), s−)dYk(s)

}

×
n

∏

k=1

exp

{

−
∫ ti

ti−1

[

λk − 1
]

ds

}

.

Resample the sample paths according to the distribution
proportional to the importance weights at times.
Or

Branch each particle to a random number of particles proportional
to the importance weights at times. (Xiong and Zeng 2006)
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Simulation: No Resampling
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Simulation: Resampling Every 100 Trades
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Simulation: Resampling Every 10 Trades
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