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1 Introduction

Much documented empirical evidence implies that the aggregate economy has
recurrent shifts between distinct regimes of the business cycle (e.g Hamilton
[17], and Diebold and Rudebusch [10]). These results have motivated the
recent studies of the impact of regime shifts on the entire yield curve us-
ing dynamic term structure models. A common approach is to incorporate
Markov-switching (or hidden Markov chains) into the stochastic processes of
the pricing kernel and/or state variables. The regime-dependence indeed of-
fers greater econometric flexibilities in empirical models of the term structure
such as Bansal and Zhou [1]. However, as pointed out by Dai and Singleton
[8], the risk of regime shifts is not priced in many of these models, and hence
it does not contribute independently to bond risk premiums.

Without pricing the risk of regime shifts, the previous studies have essen-
tially treated the regime shifts as an idiosyncratic risk that can be diversified
away by bond investors. However, Bansal and Zhou [1] and Wu and Zeng
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[22] have empirically shown that regimes are intimately related to the busi-
ness cycle, suggesting a close link between the regime shift and aggregate
uncertainties.

Extending the aforementioned strand of literature, Wu and Zeng [22] de-
velop a dynamic term structure model under the systematic risk of regime
shifts in a general equilibrium setting similar to Cox, Ingersoll and Ross [5] [6]
(henceforth CIR). The model implies that bond risk premiums include two
components under regime shifts. One is a regime-dependent risk premium due
to diffusion risk as in the previous studies. The other is a regime-switching
risk premium that depends on the covariations between the discrete changes
in marginal utility and bond prices across different regimes. This new com-
ponent of the term premiums is associated with the systematic risk of re-
current shifts in bond prices (or interest rates) due to regime changes and
is an important factor that affects bond returns. Furthermore, we also ob-
tain a closed-form solution of the term structure of interest rates under an
affine-type model using the log-linear approximation similar to that in Bansal
and Zhou [1]. The model is estimated by Efficient Method of Moments using
monthly data on 6-month treasury bills and 5-year treasury bonds from 1964
to 2000. We find that the market price of regime-switching risk is highly
significant and affects mostly the long-end of the yield curve. The regime-
switching risk, as expected, accounts for a significant portion of the term
premiums for long-term bond.

A drawback in Wu and Zeng [22] is that in a affine-type model, the closed
form solution of the yield curve is obtained under log-linear approximation
1. In this paper, using no arbitrage approach, we derive an exact solution of
the term structure of interest rates in a more general essentially-affine-type
model under regime-switching risk.

In the standard affine models (such as Duffie and Kan [13] and Dai and
Singleton [7]), the market price of diffusion risk is proportional to the volatil-
ity of the state variable. Such a structure guarantees that the models satisfy
a requirement of no-arbitrage: Risk compensation goes to zero as risk goes to
zero. However, as Duffee [12] points out, this structure limits the variation of
the compensations that investors anticipate to obtain when encountering a
risk. More precisely, since the compensation is bounded below by zero, it can-
not change sign over time. Duffee [12] argues that this is the main reason why
the completely affine models fails at forecasting. He suggests a boarder class
of essentially affine models to break the tight link between risk compensation
and interest rate volatility. These more generally models are shown to have
better forecasting ability than the standard affine models. In this paper, we
introduce regime shifts into the class of essentially affine models. Our model

1 Due to the natural of log-linear approximation, we conjecture the error bound
should be in the order of r2. Wu and Zeng [23] derived the close form for the
multi-factor affine models with both jump and regime-switching risks using log-
linear approximation.
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with exact solution presented here further equips with regime-switching and
should be more useful in forecasting future yields.

To the best of our knowledge, three other papers also presented ex-
act solutions for regime switching term structure models. Two of them are
continuous-time models. One is Landen [19] and the other is Dai and Sin-
gleton [8]. Landen [19] focused on the case under risk-neutral probability
measure, she did not mention anything about the market price of regime
switching risk. Dai and Singleton [8] surveyed the theoretical specification of
dynamic term structure models. Moreover, they proposed a Gaussian affine-
type model with regime-switching risk and constant volatility within each
regime. In our model, we allow for stochastic volatilities in each regime and
the diffusion risk is in an essentially affine form. The third one is Dai, Single-
ton and Yang [9]. They develop and empirically implement a discrete-time
Gaussian dynamic term structure model with priced factor and regime-shift
risks.

The rest of the paper is organized as follows. Section 2 presents a simpler
expressive form of regime shifting using marked point process (or random
measure) approach. Section 3 first develops a framework for the term struc-
ture of interest rates with regime-switching risk using the no arbitrage ap-
proach. Section 4 specifies a essentially-affine-type model with regime switch-
ing risk and derives an exact solution. Section 5 concludes with some future
research topics.

2 A New Representation for Modeling Regime Shift

In the literature of interest rate term structure, there are three approaches
to model regime shifting process. The first approach is the Hidden Markov
Model, summarized in the book of Elliott et. al. [15], and its application to the
term structure can be found in Elliott and Mamon [16]. The second approach
is the Conditional Markov Chain, discussed in Yin and Zhang [24], and its
applications to the term structure are in Bielecki and Rutkowski ([2],[3]). The
third approach is the Marked Point Process or the Random Measure approach
as in Landen [19]. Due to its notational simplicity, here, we follow the third
approach but propose a new and simpler representation. In Landen [19], the
mark space is a product space of regime E = {(i, j) : i ∈ {1, ..., N}, j ∈
{1, 2, ..., N}, i 6= j}, including all possible regime switchings. Below, we sim-
plify the mark space to the space of regime only and consequently simplify
the corresponding random measure as well as the equation for s(t) or st,
which is defined as the most recent regime.

There are two steps to obtain the simple expression of s(t).
Step 1: we define a random counting measure. Let the mark space U =

{1, 2, ..., N} be all possible regimes with the power σ-algebra, and u be a
generic point in U . Let A be a subset of U . Let m(t, A) counts the cumulative
number of entering a regime that belongs to A during the time (0, t]. For
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example, m(t, {u}) counts the cumulative number of entering regime u during
(0, t]. Note that m is a random counting measure. Let η be the usual counting
measure on U . Then, η has the following two properties: For A ∈ U , η(A) =∫
IAη(u) (i.e. η(A) counts the number of elements in A) and

∫
A
f(u)η(u) =∑

u∈A f(u).
A marked point process or a random measure is uniquely characterized by

its stochastic intensity kernel,2. Let x(t) denote a state variable to be defined
later. Then, the stochastic intensity kernel of m(t, ·) can be defined as

γm(dt, du) = h(u;x(t−), s(t−))η(du)dt, (1)

where h(u;x(t−), s(t−)) is the conditional regime-shift (from regime s(t−) to
u) intensity at time t (we assume h(u;x(t−), s(t−)) is bounded). Heuristically,
γm(dt, du)dt can be thought of as the conditional probability of shifting from
Regime s(t−) to Regime u during [t, t + dt) given x(t−) and s(t−). Then,
γm(t, A), the compensator of m(t, A), can be written as

γm(t, A) =
∫ t

0

∫
A

h(u;x(τ−), s(τ−))η(du)dτ

=
∑
u∈A

∫ t

0

h(u;x(τ−), s(τ−))dτ.

Step 2: We are in the position to present the integral and differential
forms for the evolution of regime, s(t), using the random measure defined
above. First, the integral form is:

s(t) = s(0) +
∫

[0,t]×U

(u− s(τ−))m(dτ, du). (2)

Note that m(dτ, du) is zero most of time and only becomes one at regime-
switching time ti with u = s(ti), the new regime at time ti. Observe that the
above expression is but a telescoping sum: s(t) = s(0)+

∑
ti<t(s(ti)−s(ti−1).

Second, the differential form is:

ds(t) =
∫

U

(u− s(t−))m(dt, du). (3)

To see the above differential equation is valid, assuming there is a regime
switching from s(t−) to u occurs at time t, then s(t) − s(t−) = (u − s(t−))
implying s(t) = u.

These two forms are crucial in the following two sections.

2 See Last and Brandt [20] for detailed discussion of marked point process, stochas-
tic intensity kernel and related results.
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3 The Model

3.1 Two State Variables

We assume there are two state variables. One describes the regime change,
s(t) or st, which stands the most recent regime. As described in Section 2, st

follows (2) or (3). The other state variables, xt, is described by a diffusion

dxt = µ(xt, st)dt+ σ(xt, st)dWt (4)

where the drift term and the diffusion term are in general time-varying and
regime-dependent, and Wt is a standard Brownian motion.

The instantaneous short-term interest rt is a linear function of xt given
st

rt = ψ0(st) + ψ1xt (5)

where ψ0(st) is a constant depending on regime but ψ1 is not. When ψ1 is
also regime-dependent, we can not obtain an exact solution.

3.2 Pricing Kernel

Under certain technical conditions, absence of arbitrage is sufficient for the
existence of the pricing kernel (see Harrison and Kreps [18]). We further
specify the pricing kernel Mt as

dMt

Mt−
=− rt−dt− λD(xt, st)dWt

−
∫

U

λS(u;xt, st−)[m(dt, du)− γm(dt, du)]
(6)

where λD(xt, st) is the of market price of diffusion risk, which is also regime-
dependent; and λS(u;xt−, st−) is the market price of regime-switching (from
regime st− to regime u) risk given xt and st−.

Note that the explicit solution for Mt can be obtained by Doleans-Dade
exponential formula (Protter [21]) as the following:

Mt =
(
e−

R t
0 rτ dτ

) (
e−

R t
0 λD(xτ ,sτ )dW (τ)− 1

2

R t
0 λ2

D(xτ ,sτ )dτ
)
×(

e
R t
0

R
U

λS(u;sτ−,sτ−)γm(dτ,du)+
R t
0

R
U

log(1−λS(u;xτ−,sτ−))m(dτ,du)
) (7)

3.3 The Risk-Neutral Probability Measure

The specifications above complete the model for the term structure of interest
rates, which can be solved by a change to the risk-neutral probability measure.
We first obtain the following two lemmas. The first lemma characterizes the
equivalent martingale measure under which the interest rate term structure
is determined. The second lemma specifies the dynamic of the short rate and
the regime under the equivalent martingale measure.
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Lemma 1. For fixed T > 0, the equivalent martingale measure Q can be
defined by the Radon-Nikodym derivative below

dQ

dP
= ξT /ξ0

where for t ∈ [0, T ]

ξt =
(
e−

R t
0 λD(xτ ,sτ )dW (τ)− 1

2

R t
0 λ2

D(xτ ,sτ )dτ
)
×(

e
R t
0

R
U

λS(u;xτ ,sτ−)γm(dτ,du)+
R t
0

R
U

log(1−λS(u;xτ ,sτ−))m(dτ,du)
) (8)

provided λD, λS and h in m(t, A) are all bounded in [0, T ].

Proof. Obviously, ξt > 0 for all 0 ≤ t ≤ T . By Doleans-Dade exponential
formula, ξt can be written in stochastic differential equation form as

dξt
ξt

= −λD(xt, st)dWt −
∫

U

λS(u;xt, st−)[m(dt, du)− γm(dt, du)]. (9)

Since Wt, and m(t, A)− γm(t, A) are martingales under P , ξt is a local mar-
tingale.

Since ξt is a P-local martingale and ξ0 = 1, it suffices to show that
E([ξ]t) <∞ to obtain E(ξt) = 1 for all t, because ξ becomes a martingale if
E([ξ]t) <∞ for all t, where [ξ]t is the quadratic variation process of ξ. Let

Kt = −
∫ t

0

λD(xτ , sτ )dWτ −
∫ t

0

∫
U

λS(u;xτ , sτ−)[m(dt, du)−γm(dτ, du)]

By assumption, we suppose that |λD(xt, st)| ≤ CD for all xt and st, and
|λS(u;xt, st−)| ≤ CS and h(u;xt, st−) ≤ Ch for all u, xt and st−. Using
the properties of quadratic variation for semimartingale (see Section 2.6 of
Protter [21]), we have

[K]t =
∫ t

0

λ2
D(xτ , sτ )dτ +

∫ t

0

∫
U

λ2
S(u;xτ , sτ−)m(dτ, du).

Observe that for t ≤ T ,∫ t

0

λ2
D(xτ , sτ )dτ ≤ C2

D T.

and

0 <
∑

u

λ2
S(u;xt, st−)h(u;xt, st−) ≤ N C2

S Ch.
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Then,

E([ξ]t) = E

∫ t

0

ξ2τ−d[K]τ

= E

{∫ t

0

ξ2τ−λ
2
D(xτ , sτ )dτ +

∫ t

0

ξ2τ−

∫
U

λ2
S(u;xτ , sτ−)m(dτ, du)

}
≤ E

{
C2

D

∫ t

0

ξ2τdτ +
∫ t

0

ξ2τ−

∫
U

λ2
S(u;xτ , sτ−)m(dτ, du)

}
≤ E

{
C2

D

∫ t

0

ξ2τdτ +
∫ t

0

ξ2τ−

∫
U

λ2
S(u;xτ , sτ−)γm(dτ, du)

}
≤ E

{
C2

D

∫ t

0

ξτ−dτ +
∫ t

0

ξ2τ−

∫
U

λ2
S(u;xτ , sτ−)h(u;xτ , sτ−)η(du)dτ

}
≤ E

{
C2

D

∫ t

0

ξτ−dτ +
∫ t

0

ξ2τ−
∑

u

λ2
S(u;xτ , sτ−)h(u;xτ , sτ−)dτ

}

≤ E

{
C2

D

∫ t

0

ξ2τdτ +N C2
S Ch

∫ t

0

ξ2τ−dτ

}
≤ C∗

∫ t

0

E(ξ2τ )dτ

(10)

for C∗ = max(C2
D, N C2

S Ch). By the same boundedness and from the direct
calculation of expected values under normal and Poissons, we obtain

E(ξ2t ) < C∗∗

for some constant C∗∗. This implies E([ξt]) < ∞ for all t and hence, ξt is a
martingale. 2

Lemma 2. Under the risk-neutral probability measure Q, the dynamics of
state variables, xt and st, are given by the following stochastic differential
equations respectively

dxt = µ̃(xt, st)dt+ σ(xt, st)dW̃t (11)

dxt =
∫

U

(u− st−)m̃(dt, du) (12)

where µ̃(xt, st) = µ(xt, st)− σ(xt, st−)λD(xt, st); W̃t is a standard Brownian
motion under Q; m̃(t, A), the corresponding marked point process of m(t, A)
under Q, has the intensity matrix H̃(u;xt−, st−) = {h̃(u;xt−, st−)} =
{h(u;xt−, st−) (1 − λS(u;xt−, st−))}. The compensator of m̃(t, A) under Q
becomes

γm̃(dt, du) = (1− λS(u;xt−, st−))γm(dt, du) = h̃(u;xt−, st−)η(du)dt,
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Proof. Applying Girsanov’s Theorem on the change of measure for Brownian
motion, we have W̃t = Wt −

∫ t

0
λD(xτ , sτ )dτ is a standard Brownian motion

under Q. This allows us to obtain µ̃(xt, st) = µ(xt, st)− σ(xt, st)λD(xt, st).
Since the marked point process, µ(t, A), is actually a collection ofN(N−1)

conditional Poisson processes, by applying Girsanov’s Theorem on condi-
tional Poisson process (for example, see Theorem T2 and T3 in Chapter 6
of Bremaud [4]), the conditional Poisson process with intensity, h(u;xt, st−),
under P, becomes the one with intensity, h(u;xt, st−)(1− λS(u;xt, st−)) un-
der Q. Then, the result follows. 2

3.4 The Term Structure of Interest Rates

Let {Ft}t≥0 be the natural filtration generated by W and m(t, ·). In the
absence of arbitrage, the price at time t− of a default-free pure discount
bond that matures at T , P (t−, T ), can be obtained as,

P (t−, T ) = EQ
t−(e−

R T
t

rτ dτ ) = EQ{e−
R T

t
rτ dτ |Ft} = EQ{e−

R T
t

rτ dτ |xt, st−}
(13)

with the boundary condition P (T−, T ) = P (T, T ) = 1 and the last equality
comes from the Markov property of (xt, st).

Therefore, we can let P (t−, T ) = F (t−, xt, st−, T ) = F (t−, x, s, T ) where
x = xt− and s = st−. The following proposition gives the partial differential
equation characterizing the bond price.

Proposition 1. The price of the default-free pure discount bond F (t−, x, s, T )
defined in (13) satisfies the following partial differential equation

∂F

∂t
+ µ̃(x, s)

∂F

∂x
+

1
2
σ2(x, s)

∂2F

∂x2
+

∫
U

∆SF h̃(u;x, s)η(du) = rF (14)

with the boundary condition F (T−, x, s, T ) = F (T, x, s, T ) = 1 and ∆SF =
F (t, x, u, T )− F (t−, x, s, T ).

Proof. It basically comes from Feynman-Kac formula. Or, intuitively, the
above result is obtained by applying Ito’s formula for semimartingale (Protter
[21]) under measure Q to F (t, x, s, T )

dF =(
∂F

∂t
+ ũ

∂F

∂x
+

1
2
σ2 ∂

2F

∂x2
)dt+ σ

∂F

∂x
dW̃t

+ [F (t, xt, st, T )− F (t−, xt−, st−, T )]
(15)

Since x(t) is continuous, the last term can be expressed by∫
U

∆SF m̃(dt, du).
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Note that the above term can be made as a martingale by subtracting its
own compensator, which is added back in dt term. Note that γm̃(dt, du) =
h̃(u;x(t−), s(t−))η(du)dt. Therefore we can have the following equation for
F (t−, x, s, T )

dF = {∂F
∂t

+ ũ
∂F

∂x
+

1
2
σ2 ∂

2F

∂x2
+

∫
U

∆SF h̃(u;x, s)η(du)}dt

+ σ
∂F

∂x
dW̃t +

∫
U

∆sF [m̃(dt, du)− γm̃(dt, du)]
(16)

Since no arbitrage implies that the instantaneous expected returns of all
assets should be equal to the short-term interest rate under the risk-neutral
measure, equation (14) then follows by matching the coefficient of the dt term
of (16) with rF . 2

4 A Tractable Specification with Exact Solution

In general equation (14) doesn’t admit a closed form solution for the bond
price. In this section, We consider a tractable specification: affine term struc-
ture of interest rates with regime switching and regime-switching risk.

4.1 Affine Regime-Switching Models

Duffie and Kan [13] and Dai and Singleton [7], among other, have detailed dis-
cussions of completely affine term structure models under diffusions. Duffie,
Pan and Singleton [14] deals with general asset pricing under affine jump-
diffusions. Duffee [12] presented a class of essentially affine models and Duarte
[11] introduced semi-affine models. Bansal and Zhou [1] and Landen [19] all
use affine structure for their regime switching models. Following this litera-
ture, we make the following parametric assumptions

Assumption 1 The diffusion components of xt, as well as those in the
Markov switching process st all have an affine structure. In particular,

(1) µ(xt, st) = a0(st) + a1(st)xt,

(2) σ(xt, st) =
√
σ0(st) + σ1xt,

(3) h(u;xt, st−) = exp{h0(u; st−) + h1(u; st−)xt};

(4) λD(xt, st) =
λ0(st) + λ1xt + a1(st)xt√

σ0(st) + σ1xt

,

(5) 1− λS(u;xt, st−) = eθ(u;s(t−))/h(u;xt, st−).
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The first three assumptions are related to the two state processes. For the
diffusion state process, we assume that the drift term and the volatility term
are all affine functions of xt with regime-dependent coefficients. Then, x(t)
becomes

dx = (a0(s) + a1(s)x) dt+
√
σ0(s) + σ1 x dWt (17)

We further assume that the log intensity of regime shifts is an affine function
of the short term rate xt. This assumption ensures the positivity of the inten-
sity function and also allows the transition probability to be time-varying.3

The last two assumptions deal with the market prices of risk. In the
completely affine models, the market price of diffusion risk is proportional to
the volatility of the state variable xt. Such a structure guarantees that the
models satisfy a requirement of no-arbitrage: Risk compensation goes to zero
as risk goes to zero. However, since variances are nonnegative, this structure
limits the variation of the compensations that investors anticipate to obtain
when encountering a risk. More precisely, since the compensation is bounded
below by zero, it cannot change sign over time. This restriction, however, is
relaxed in the essentially affine models of Duffee [12].

Following this literature, we also assume that the market price of the
diffusion risk is in the form of essentially affine, but we extend to the case
with regime switching with small twists. Namely, we assume the diffusion
risk is a sum of regime-dependent linear combination of xt and non-regime-
dependent scaler of xt divided by the diffusion coefficient. For the market
price of regime switching risk, we assume that a regime-switching dependent
constant divided by the intensity of regime switching. We choose these forms
of market prices because we may obtain a closed-form solution to the bond
prices.

Under these parameterizations of the market prices of risk, the state pro-
cess xt and the Markov chain st preserve the affine structure. In particular,
under the risk-neutral measure Q the drift term µ̃(s, r), and the log of regime
switching intensity h̃(u;x, s) are affine functions of the state x with regime
dependent coefficients. Precisely, under the risk-neutral measure Q,

dx = (a0(s) + a1(s)x) dt+
√
σ0(s) + σ1 x dW̃t − [λ0(s) + λ1x+ a1(s)x]dt

= [a0(s)− λ0(s)− λ1 x] dt+
√
σ0(s) + σ1 x dW̃t.

So, the coefficient
µ̃(x, s) = a0(s)− λ0(s)− λ1 x

and σ(x, s) remains the same. And

h̃(u;x, s(t−)) = eθ(u;s(t−)).

3 A more general specification is to allow duration-dependence as well. However a
closed-form solution for the yield curve may not be attainable.
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Then, we can solve for the term structure of interest rates and obtain the
closed form solution as follows:

Theorem 2. Under the Assumption 1, the price at time t of a risk-free pure
discount bond with maturity τ is given by f(s(t−), x(t), τ) = eA(τ,st)+B(τ)xt

and the τ -period interest rate is given by R(t−, τ) = −A(τ, st−)/τ−B(τ)xt/τ .
With s = s(t−), A(τ, s) and B(τ) are determined by the following ordinary
differential equations

− ∂B(τ)
∂τ

− λ1B(τ) +
1
2
σ1B

2(τ) = ψ1 (18)

and

− ∂A(τ, s)
∂τ

+ [a0(s)− λ0(s)]B(τ) +
1
2
σ0(s)B2(τ)

+
∫

U

[
e∆SA(τ,s) − 1

]
eθ(u;s)η(du) = ψ0(s)

(19)

with boundary conditions A(0, s) = 0 and B(0) = 0, where ∆SA = A(τ, u)−
A(τ, s).

Proof. Without loss of generality, let the price at time t− of a pure-discount
bond that will mature at T be given as

F (t−, s(t−), x(t), T ) = f(s(t−), x(t), τ) = eA(τ,s(t−))+B(τ)x(t)

where τ = T − t and A(0, s) = 0, B(0, s) = 0.
Then, the basic idea is to calculate the derivatives of the above F , sub-

stitute them in Eq.(14), and match the coefficients of x.
Observe that

∂F

∂τ
= F (−∂A(τ, s)

∂τ
− ∂B(τ)

∂τ
x),

∂F

∂x
= FB(τ),

∂2F

∂x2
= FB2(τ),

h̃(u;x(t), s(t−)) = h(u;x(t), s(t−))(1− λS(u;x(t), s(t−)) = eθ(u;s(t−)),

FS = F (e∆SA − 1)

where ∆SA = A(τ, u)−A(τ, s), and recall that

r = ψ0(s) + ψ1x.

With some simplifications and letting s = s(t−), Proposition 1 then im-
plies

ψ0(s) + ψ1x = −∂A(τ, s)
∂τ

− ∂B(τ)
∂τ

x+ [a0(s)− λ0(s)− λ1 x]B(τ)

+
1
2
[σ0(s) + σ1x]B2(τ) +

∫
U

(
e∆SA − 1

)
eθ(u;s)η(du)

(20)

Then, Theorem 2 follows by matching the coefficients on x on both side
of the above equation. 2
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The above model extends the existing literature on the term structure
of interest rates under regime shifts in several ways. While Landen [19] pro-
vided an exact solution to the yield curve only under risk-neutral probability
measure, she was silent on the market price of regime switching risk. In the
survey paper of Dai and Singleton [8] proposed a Gaussian affine-type model
with regime-switching risk and constant volatility within each regime. In our
model, we allow for stochastic volatilities in each regime and our diffusion
risk is in a essentially affine form. In the case of Bansal and Zhou [1], the
risk of regime shifts is not priced neither, and they had to rely on log-linear
approximation to obtain closed form solution for bond pricing.

Finally, we examine the expected excess return on a long term bond over
the short rate implied by our model.

Corollary 1. Under the assumptions of Theorem 2, the expected excess re-
turn on a long term bond over the short rate is given by

Et

(
dft

ft−

)
− rtdt = [λ0(s) + λ1x+ a1(s)x]B(τ)dt

+
∫

U

(
e∆SA − 1

)
(eh0(u;s)+h1(u;s)x − eθ(u;s))η(du)dt.

(21)

Proof. Similary, let the price at time t− of a pure-discount bond that will
mature at T be given as

F (t−, s(t−), x(t), T ) = f(s(t−), x(t), τ) = eA(τ,s(t−))+B(τ)x(t)

where τ = T − t and A(0, s) = 0, B(0, s) = 0.
Applying It’s formula to F (t−, s(t−), x(t), T ) under the physical measure

P, we obtain the following similar to Eq.(16)

dF = {∂F
∂t

+ u
∂F

∂x
+

1
2
σ2 ∂

2F

∂x2
+ +

∫
U

∆SF h(u;x, s)η(du)}dt

+ σ
∂F

∂x
dWt +

∫
U

∆sF [m(dt, du)− γm(dt, du)]
(22)

Applying Proposition 1, we want to make the coefficient of dt term equal to
rF by subtracting and adding. Using Lemma 2, noting the last two terms are
martingales, and taking conditional expectation with some simplifications,
we obtain:

Et

(
dF

F

)
− rtdt = σ(x, s)λD(x, s)

∂F

∂x
/Fdt

+
∫

U

∆SF

F
h(u;x, s) λS(u;x, s)η(du)dt

(23)

With simplifications, Assumption 1 implies that the above equation becomes
Eq.(21). 2
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The first term on the right hand side of equation (21) is interpreted as
the diffusion risk premium in the literature, and the second can be analo-
gously defined as the regime-switching risk premium. The equation shows
that introducing the dependence of the market prices of diffusion on st adds
more flexibility to the specification of the risk premium. Bansal and Zhou [1]
points out that it is mainly this feature of the regime switching model that
provides improved goodness-of-fit over the existing term structure models.
On the other hand, (21) also shows that if the term structure exhibits signifi-
cant difference across regimes (∆sA 6= 0), there is an additional source of risk
due to regime shifts and it should also be priced (eh0(u;s)+h1(u;s)x − eθ(u;s))
in the term structure model. Introducing the regime switching risk not only
can add more flexibilities to the specification of time-varying bond risk pre-
miums, but also can be potentially important in understanding the bond risk
premiums over different holding periods.

5 Conclusions

This paper first presents a new marked point process representation of regime
change using a random measure. We apply this new representation to specify
a term structure model of interest rate with regime-switching risk. We derive
an exact solution for the yield curve in an essentially-affine specification.

With this exact solution, we can further estimate the model by Effi-
cient Method of Moments as in Wu and Zeng [22] and quantify the regime-
switching risk and its impact on yield curves. Other important topics include
the implications and impacts of regime-switching risk on bond derivatives,
and on investors’ optimal portfolio choice problem. Also, more studies are
needed on the empirical evidence of regime-switching risk in interest rates.
These topics are left for future research.
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