
Contemporary Mathematics

Affine Regime-Switching Models for Interest Rate Term
Structure

Shu Wu and Yong Zeng

Abstract. To model the impact of the business cycle, this paper develops a

tractable dynamic term structure model under diffusion and regime shifts with

time varying transition probabilities. The model offers flexible parameteriza-
tion of the market prices of risk, including the price of regime switching risk.

Closed form solutions for the term structure of interest rate are obtained for
both affine- and quadratic-type models using log-linear approximation.

1. Introduction

There is strong empirical evidence suggesting that the aggregate economy is
characterized by periodic shifts between distinct regimes of the business cycle (e.g.
Hamilton [21], Filardo [17] and Diebold and Rudebusch [11]). A number of papers
have also successfully used Markov regime-switching models to fit the dynamics of
the short-term interest rate (see, among others, Hamilton [20], Garcia and Perron
[18], Gray [19] and Ang and Bakeart [2]).1 These results have motivated the recent
studies of the impact of regime shifts on the entire yield curve using dynamic term
structure models. A common approach, as in Naik and Lee [24], Boudoukh et al.
[6], Evans [16] and Bansal and Zhou [3], is to incorporate Markov-switching into
the processes of the pricing kernel and/or state variables. The regime-dependence
introduced by these papers implies richer dynamic behavior of the market prices
of risk and therefore offers greater econometric flexibility for the term structure
models to simultaneously account for the time series and cross-sectional properties
of interest rates. However, as pointed out by a recent survey paper by Dai and
Singleton [10], the risk of regime shifts is not priced in these models, hence does
not contribute independently to bond risk premiums.

The purpose of the present paper is to develop a tractable latent factor model
that can capture the effects of regime-switching, especially, the systematic risk of
regime swithching. This paper draws from the recent literature on dynamic term
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structure models under regime shifts. The main difference between the current pa-
per and the previous studies is that the risk of regime shifts is explicitly priced in our
model. The previous studies have all ignored the regime shift risk premiums except
the recent paper by Dai and Singleton [10]. Here we show that closed-form solution
can be obtained using log-linear approximation for both affine- and quadratic-type
term structure models which also price the regime shifting risk. Our model implies
that bond risk premiums include two components under regime shifts in general.
One is a regime-dependent risk premium due to diffusion risk as in the previous
studies. This risk premium has added econometric flexibilities relative to those
in single-regime models because of the Markov-shift of the underlying parameters.
The other is a regime-switching risk premium that depends on the difference of
bond prices across regimes as well as the Markov transition probabilities. There-
fore the model introduces a new source of time-variation in bond risk premiums.
This additional component of the term premiums is associated with the systematic
risk of periodic shifts in bond prices due to regime changes. Given the empirical
evidence from the previous studies that the yield curve exhibits significantly differ-
ent properties across regimes, the model implies that the regime-switching risk is
likely to be an important factor that affects bond returns.

The remainder of this paper is organized as follows. We develop a tractable
dynamic term structure models under diffusion and regime shifts in section 2. We
derive closed-form solutions for the term structure using log-linear approximation
for affine-type as well as quadratic-tpe term structure models with regime switching
in section 3. Section 4 contains some concluding remarks.

2. The Model

Consider a two-factor model of the term structure of interest rates.2 The two
factors are the instantaneous short term interest rate rt and the regime, st, where
st is a (N+1)-state continuous-time Markov chain taking on value of 0, 1, 2, · · · , N .

2.1. Modeling Regime Shifting Process. In the literature of interest rate
term structure, there are three approaches to model regime shifting process. The
first approach is the Hidden Markov Model, summarized in the book of Elliott et. al.
[14], and its application to the term structure can be found in Elliott and Mamon
[15]. The second approach is the Conditional Markov Chain, discussed in Yin and
Zhang [28], and its applications to the term structure are in Bielecki and Rutkowski
([4],[5]). The third approach is the Marked Point Process as in Landen [22]. Here,
we adopt the marked point process approach due to its notational simplicity.

Following Landen [22], we define the mark space E as

E = {(i, j) : i ∈ {0, 1, ..., N}, j ∈ {0, 1, 2, ..., N}, i 6= j},

which includes all possible regime switchings and z = (i, j) is a generic point in E.
We denote E’s σ-algebra as E = 2E . A marked point process, m(t, ·) is uniquely
characterized by its stochastic intensity kernel,3, which can be defined as

γm(dt, dz) = h(z, x(t−))I{s(t−) = i}εz(dz)dt,(2.1)

2We can easily generalize the model to include more factors. We only consider two factors

for exposition purpose.
3See Last and Brandt [23] for detailed discussion of marked point process, stochastic intensity

kernel and related results.
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where h(z, x(t−)) is the regime-shift (from regime i to j) intensity at z = (i, j)(We
assume h(z, x(t−) is bounded in [0, T ]), I{s(t−) = i} is an indicator function, and
εz(A) is the Dirac measure (on a subset A of E) at point z (defined by εz(A) = 1 if
z ∈ A and 0, otherwise). Heuristically, for z = (i, j), γm(dt, dz) can be thought of
as the conditional probability of shifting from Regime i to Regime j during [t, t+dt)
given x(t−) and s(t−) = i.

Let A be a subset of E. Then m(t, A) counts the cumulative number of regime
shifts that belong to A during (0, t]. m(t, A) has its compensator, γm(t, A), given
by

γm(t, A) =
∫ t

0

∫
A

h(z, x(τ−))I{s(τ−) = i}εz(dz)dτ.(2.2)

This simply implies that m(t, A)− γm(t, A) is a martingale.
Using the above notations, the evolution of the regime s(t) can be conveniently

represented as

ds =
∫
E

ζ(z)m(dt, dz)(2.3)

with the compensator given by

γs(t)dt =
∫
E

ζ(z)γm(dt, dz), where ζ(z) = ζ((i, j)) = j − i(2.4)

For example, if there is a regime shift from i to j occurred at time t, equation (2.3)
then implies st = (j − i) + st− = j. Note that

∫
E

is equivalent to
∑
i 6=j .

2.2. Two Factors. Without loss of generality, we assume that the two factors
determining the yield curve are characterized by the following stochastic differential
equations4

drt = a(rt, st)dt+ b(rt, st)dWt(2.5)

dst =
∫
E

ζ(z)µ(dt, dz)(2.6)

where Wt is a standard Brownian motion, µ(t, A) is the marked point process and
they are independent.

2.3. Pricing Kernel. Absence of arbitrage allows us to specify the pricing
kernel Mt as

dMt

Mt
= −rtdt− λD,tdWt −

∫
E

λS(z, rt−)[µ(dt, dz)− γµ(dt, dz)](2.7)

where λD,t ≡ λD(rt, st) is the market prices of diffusion risk; and λS(z, rt−) is the
market price of regime switching (from regime i to regime j) risk given rt−. We
assume that λD(rt, st) and λS(z, rt−) are bounded in [0, T ].

4We assume the stochastic differential equations have a unique solution and thus is well
defined. The sufficient conditions can be found in Chapter 5 of Protter [25]. We further assume
that rt is bounded below.
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Note that under the above assumptions, the explicit solution for Mt can be
obtained by Doleans-Dade exponential formula (Protter [25]) as the following:

Mt = exp
{
−
∫ t

0

rudu
}

exp
{
−
∫ t

0

λD,udWu −
1
2

∫ t

0

λ2
D,udu

}
×

exp
{∫ t

0

∫
E

λS(z, ru−)γµ(du, dz) +
∫ t

0

∫
E

log(1− λS(z, ru−))µ(du, dz)
}

(2.8)

2.4. The Term Structure of Interest Rates. The specifications above
completely pin down the yield curve. In this section we characterize the term
structure of interest rates via the risk neutral probability measure. We first obtain
the following two lemmas. The first lemma characterizes the equivalent martingale
measure under which the interest rate term structure is determined. The second
lemma specifies the dynamic of the short rate and the regime under the equivalent
martingale measure.

Lemma 2.1. For fixed T > 0, the equivalent martingale measure Q can be
defined by the Radon-Nikodym derivative below

dQ

dP
= ξT /ξ0

where for t ∈ [0, T ]

ξt = exp
{
−
∫ t

0

λD,udW (u)− 1
2

∫ t

0

λ2
D,udu

}
×

exp
{∫ t

0

∫
E

λS(z, ru−)γµ(du, dz) +
∫ t

0

∫
E

log(1− λS(z, ru−))µ(du, dz)
}

(2.9)

provided EP {ξt} = 1 for t ∈ [0, T ].

Proof. By Doleans-Dade exponential formula, ξt can be written in SDE form
as

dξt
ξt

= −λD,tdWt −
∫
E

λS(z, rt−)[µ(dt, dz)− γµ(dt, dz)].(2.10)

Since Wt, and µ(t, A)− γµ(t, A) are martingales under P , ξt is a local martingale.
Then, the assumption that EP {ξt} = 1 for t ∈ [0, T ] ensures ξt is a martingale, and
thus is the Radon-Nikodym derivative defining the equivalent martingale measure
Q.

Lemma 2.2. Under the equivalent martingale measure Q, the dynamics of rt
and st are given by the stochastic differential equations below

drt = ã(rt, st)dt+ b(rt, st)dW̃t(2.11)

dst =
∫
E

ζ(z)µ̃(dt, dz)(2.12)

where ã(rt, st) = a(rt, st)− b(rt, st) · λD(rt, st); µ̃(t, A) is the marked point process
with the stochastic intensity kernel as

γ̃µ(dt, dz) = h̃(z, rt−)I{st− = i}εz(dz)dt,

where h̃(z, rt−) = h(z, rt−)(1− λS(z, rt−)) for all z ∈ E.
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Proof. Applying Girsanov’s Theorem on the change of measure for Brownian
motion, we have W̃t = Wt −

∫ t
0
λD(ru, su)du is a standard Brownian motion under

Q. This allows us to obtain ã(rt, st) = a(rt, st)− b(rt, st)λD(rt, st).
Since the marked point process, µ(t, A), is actually a collection of N(N −

1) conditional Poisson processes, by applying Girsanov’s Theorem on conditional
Poisson process (for example, see Theorem T2 and T3 in Chapter 6 of Bremaud
[7]), the conditional Poisson process with intensity, h(z, rt−), under P, becomes the
one with intensity, h(z, rt−)(1− λS(z, rt−)) under Q. Then, the result follows.

To solve for the term structure of interest rates, note that, for fixed T , if P (t, T )
is the price at time t of a riskless pure discount bond that matures at T , we must
have, in the absence of arbitrage,

P (t, T ) = EP
t (MT /Mt) = EQ

t exp{−
∫ T

t

rudu}(2.13)

with the boundary condition P (T, T ) = 1.
Without loss of generality, let P (t, T ) = f(t, rt, st, T ). The following theorem

gives the partial differential equation characterizing the bond price.

Theorem 2.3. In the setup of this section, the price of the risk-free pure dis-
count bond f(t, rt, st, T ) defined in (2.13) satisfies the following system of partial
differential equations

ft + ãfr +
1
2
b2frr +

∫
E

∆sf h̃I{s = i}εz(dz) = rf,(2.14)

with the boundary condition: f(T, r, s, T ) = 1 for each s ∈ {1, 2, · · · , N}. Here
ft ≡ ∂f

∂t , fr ≡ ∂f
∂r , frr ≡ ∂2f

∂r2 , and ∆sf ≡ f(t, rt, st− + ζ(z), T )− f(t−, rt, st−, T ),

Proof. Applying Ito’s formula for semimartingale (see Protter [25]) to f(t, r, s, T )
under measure Q,

df = (ft + ãfr +
1
2
b2frr)dt+ bfrdW̃t + [f(t, rt, st, T )− f(t−, rt−.st−, T )](2.15)

Since the measures P and Q are equivalent, simultaneous jumps in µ(t, A) is
also of probability zero under Q. Hence the last term in the above equation can be
expressed by ∫

E

∆sf µ̃(dt, dz).

Note that the term above can be made as martingales by subtracting its own
compensator, which are added back in dt term. Therefore we have the following
equation for f(t, r, s, T ):

df =(ft + ãfr +
1
2
b2frr +

∫
E

∆sf h̃I{s = i}εz(dz))dt

+ bfrdW̃t +
∫
E

∆sf (µ(dt, dz)− γ̃µ(dt, dz))
(2.16)

Since no arbitrage implies that the instantaneous expected returns of all assets
should be the same as the short-term interest rate under the risk-neutral measure,
equation (2.14) then follows by matching the coefficient of the dt term of (2.16) and
rf .



6 SHU WU AND YONG ZENG

3. Two Tractable Specifications

In general equation (2.14) doesn’t admit a closed form solution for the bond
price. In this section, We consider two tractable specifications: affine and quadratic
term structure of interest rates with regime switching.

3.1. Affine Regime-Switching Models. Duffie and Kan [12] and Dai and
Singleton [9], among other, have detailed discussions of affine term structure models
under diffusions. Duffie, Pan and Singleton [13] deals with general asset pricing
under affine jump-diffusions. Bansal and Zhou [3] and Landen [22] all use affine
structure for their regime switching models. Following this literature, we make the
following parametric assumptions

Assumption 3.1. The diffusion components of the short rate rt, as well as
those in the Markov switching process st all have an affine structure. In particular,

(1) a(rt, st) = a0(st) + a1(st)rt,
(2) b(rt, st) =

√
σ0(st) + σ1(st)rt,

(3) h(z, rt−) = exp{h0(z) + h1(z)rt−};
(4) λD(rt, st) = λD(st)

√
σ0(st) + σ1(st)rt,

(5) λS(z, rt) = 1− exp{λ0,St(z) + λ1,St(z)rt}.

The first three assumptions are related to the short rate process. We assume
that the drift term and the volatility term of the diffusion part are all affine functions
of rt with regime-dependent coefficients. Then, r(t) becomes

dr = (a0(s) + a1(s) r) dt+
√
σ0(s) + σ1(s) r dBt(3.1)

We further assume that the log intensity of regime shifts is an affine function of
the short term rate rt. This assumption allow the transition probability to be
time-varying.5

The last two assumptions deal with the market prices of risk. We assume that
the market price of the diffusion risk is proportional to the volatility of the state
variable rt as in the conventional affine models as well as regime dependent. For the
market price of regime switching risk, we assume that log of one minus market price
of regime switching risk is affine of rt. We pick this form because using log-linear
approximation we may obtian a close-form solution to the bond pricing.

Under these parameterizations of the market prices of risk, the short rate rt
and the Markov chain st preserve the affine structure. In particular, under the risk-
neutral measure Q the drift term ã(s, r), and the log of regime switching intensity
h̃(z, r) in (2.14) of Theorem 2.3 are affine functions of the instantaneous short-term
interest r with state dependent coefficients:

ã(s, r) = ã0(s) + ã1(s)r = a0(s)− λD(s)σ0(s) + [a1(s)− λD(s)σ1(s)]r

and
h̃(z, r) = exp{h̃0(z) + h̃1(z)r}

= exp{(h0(z) + λ0,S(z)) + (h1(z) + λ1,S(z))r}.
Using a log-linear approximation similar to that in Bansal and Zhou [3], we

can solve for the term structure of interest rates as follows:

5Of course, a more general specification is to allow duration-dependence as well. However a

closed-form solution for the yield curve may not be attainable. We are currently investigate this
generalization.
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Theorem 3.2. Under the Assumption 3.1, the price at time t of a risk-free
pure discount bond with maturity τ is given by P (s(t), r(t), τ) = eA(τ,st)+B(τ,st)rt

and the τ -period interest rate is given by R(t, τ) = −A(τ, st)/τ−B(τ, st)rt/τ , where
A(τ, s) and B(τ, s) are determined by the following differential equations

− ∂B(τ, s)
∂τ

+ ã1(s)B(τ, s) +
1
2
σ1(s)B2(τ, s)

+
∫
E

[
e∆sA(∆sB + h̃1(z))− h̃1(z)

]
eh̃0(z)1(s = i)εz(dz) = 1

(3.2)

and

− ∂A(τ, s)
∂τ

+ ã0(s)B(τ, s) +
1
2
σ0(s)B2(τ, s)

+
∫
E

[
e∆sA − 1

]
eh̃0(z)1(s = i)εz(dz) = 0

(3.3)

with boundary conditions A(0, s) = 0 and B(0, s) = 0, where ∆sA = A(τ, s+ζ(z))−
A(τ, s) and ∆sB = B(τ, s+ ζ(z))−B(τ, s)

Proof. Without loss of generality, let the price at time t of a pure-discount
bond that will mature at T be given as

f(t, s(t), x(t), T ) = P (s(t), r(t), τ) = eA(τ,s(t))+B(τ,s(t))r(t)

where τ = T − t and A(0, s) = 0, B(0, s) = 0.
Theorem 2.3 then implies

r = −∂A(τ, s)
∂τ

− ∂B(τ, s)
∂τ

r

+ [ã0(s) + ã1(s)r]B(τ, s) +
1
2

[σ0(s) + σ1(s)r]B2(τ, s)

+
∫
E

(
e∆sA+∆sBr − 1

)
eh̃0(z)+h̃1(z)r1(s = i)εz(dz)

(3.4)

where ∆sA = A(τ, s+ ζ(z))−A(τ, s) and ∆sB = B(τ, s+ ζ(z))−B(τ, s)
Using the log-linear approximation,

e(∆sB+h̃1)r ≈ 1 + (∆sB + h̃1)r, and eh̃1r ≈ 1 + h̃1r,

we have (
e∆sA+∆sBr − 1

)
eh̃0+h̃1r

=e(∆sA+h̃0)+(∆sB+h̃1)r − eh̃0+h̃1r

≈e(∆sA+h̃0)
(

1 + (∆sB + h̃1)r
)
− eh̃0

(
1 + h̃1r)

=eh̃0

(
e∆sA − 1

)
+
[
e∆sA+h̃0(∆sB + h̃1)− eh̃0 h̃1

]
r.

(3.5)

Theorem 3.1 follows by substituting the above approximation into (3.4) and
matching the coefficients on r on both side of the equation.

Note that Theorem 3.1 includes the affine model by Duffie and Kan [12] Bansal
and Zhou [3] and Landen [22] as special cases. When the is only one regime,
∆sB = 0 and e∆sA − 1 = 0. Then, (3.2) and (3.3) reduce to the equations for
bond pricing of affine models. Without using the log-linear approximation, Landen
[22] only considers models where ∆sB = 0 and is silent on the market price of
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regime switching risk. In the case of Bansal and Zhou [3], the risk of regime
shifts is not priced neither, i.e. h̃0(z) = h0(z). The model in Theorem 3.2 is in
fact a special case of that in Dai and Singleton [10], which proposes a general
dynamic term structure model where the risk of regime shifts is priced. The main
difference between the current paper and Dai and Singleton [10] is that we also
provided an explicit solution for the term structure of interest rates using log-linear
approximation even when both the coefficients of drift and diffusion are regime-
dependent.

To better see the difference between the model in Bansal and Zhou [3] and the
current one, we can examine the expected excess return on a long term bond over
the short rate implied by our model. Consider a long term bond with maturity
τ whose price is given by P (t, τ) = eA(τ,st)+B(τ,st)rt . Using Ito’s formula, we can
easily obtain

Et

(
dPt
Pt

)
− rt = λD(st, rt)b(st, rt)B(τ, st)

+
∫ (

e∆sA+∆sB·rt − 1
)
h(z, rt)λS(z, rt)1(st = i)εz(dz)

(3.6)

The first term on the right hand side of equation (3.6) is interpreted as the
diffusion risk premium in the literature, and the second can be analogously defined
as the regime-switching risk premium. The equation shows that introducing the
dependence of the market prices of diffusion on st adds more flexibility to the
specification of the risk premium. Bansal and Zhou [3] points out that it is mainly
this feature of the regime switching model that provides improved goodness-of-
fit over the existing term structure models. On the other hand, (3.6) also shows
that if the term structure exhibits significant difference across regimes (∆sA 6= 0 or
∆sB 6= 0), there is an additional source of risk due to regime shifts and it should also
be priced (λS(z, rt)) in the term structure model. Introducing the regime switching
risk not only can add more flexibilities to the specification of time-varying bond
risk premiums, but also can be potentially important in understanding the bond
risk premiums over different holding periods. Wu and Zeng [27] use a general
equilibrium model to introduce the systematic risk of regime shift in the term
structure of interest rate and further estimate the model by Efficient Method of
Moments. They find that the market price of the regime-switching risk is not
only statistically significant, but also economically important, accounting for a
significant portion of the term premiums for long-term bonds. Ignoring the regime-
switching risk leads to underestimation of long-term interest rates and therefore
flatter yield curves.

3.2. Quadratic Regime-Switching Models. Quadratic term strucutre mod-
els for interest rate also offer tractable structures and is another class of useful
models. Ahn et.al. [1] is a recent paper provides theory and empirical evidence on
the quadratic term structure models. Here, we incorporate regime-switching into
them.

In the quadratic case, we make the following assumptions for the short rate
and the Markov switching process.

Assumption 3.3. The diffusion components of the short rate rt, as well as
those in the Markov switching process st have the following structure:

(1) a(rt, st) = a0(st) + a1(st)rt,
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(2) b(st) =
√
σ(st),

(3) h(z, rt−) = eh0(z)+h1(z)rt−+h2(z)r2
t− ;

(4) λD(st) = λD(st)
√
σ0(st),

(5) λS(z, rt) = 1− eλ0,S(z)+λ1,S(z)rt+λ2,S(z)r2
t .

The first two assumptions imply the short rate process is a Gaussian process,
which is Vasicek’s model with regime dependent coefficients. The third assumption
specifies that the log intensity of regime shifts is a quadratic function of the short
term rate rt. The last two assumptions deal with the market prices of risk. We
assume that the market prices of the diffusion risk are regime-dependent constants.
For the market price of regime switching risk, we assume that log of one minus
market price of regime switching risk is a quadratic function of rt. We pick this
form because using log-linear approximation we may obtian a close-form solution
to the bond pricing. Here, b and λD can only be constants. If they have linear or
quadratic terms, their coefficents will be zero in the coefficent matching.

Under the risk-neutral measure Q the drift term ã(s, r), and the log of regime
switching intensity h̃(z, r) in (2.14) of Theorem 2.3 become

ã(s, r) = ã0(s) + ã1(s)r = a0(s)− λD(s)σ(s) + a1(s)r

and
h̃(z, r) = exp{h̃0(z) + h̃1(z)r + h̃2r

2}

= exp{(h0(z) + λ0,S(z)) + (h1(z) + λ1,S(z))r + (h2(z) + λ2,S(z))r2}.
Similarly, using a log-linear approximation, we can solve for the term structure

of interest rates in quadratic form as follows:

Theorem 3.4. Under the Assumption 3.3, the price at time t of a risk-free pure
discount bond with maturity τ is given by P (s(t), r(t), τ) = eA(τ,st)+B(τ,st)rt+C(τ,st)r

2
t

and the τ -period interest rate is given by R(t, τ) = −(A(τ, st)−B(τ, st)rt−C(τ, st)r2
t )/τ ,

where A(τ, s), B(τ, s) and C(τ, s) are determined by the following differential equa-
tions

− ∂C(τ, s)
∂τ

+ 2ã1(s)C(τ, s) + 2σ(s)C2(τ, s)

+
∫
E

[
e∆sA(∆sC + h̃2(z))− h̃2(z)

]
eh̃0(z)1(s = i)εz(dz) = 0

(3.7)

− ∂B(τ, s)
∂τ

+ 2ã0C(τ, s) + ã1(s)B(τ, s) + 2σ(s)B(τ, s)C(τ, s)

+
∫
E

[
e∆sA(∆sB + h̃1(z))− h̃1(z)

]
eh̃0(z)1(s = i)εz(dz) = 1

(3.8)

and

− ∂A(τ, s)
∂τ

+ ã0(s)B(τ, s) +
1
2
σ(s)(2C(τ, s) +B2(τ, s))

+
∫
E

[
e∆sA − 1

]
eh̃0(z)1(s = i)εz(dz) = 0

(3.9)

with boundary conditions A(0, s) = B(0, s) = C(0, s) = 0, and ∆sA = A(τ, s +
ζ(z))−A(τ, s), ∆sB = B(τ, s+ ζ(z))−B(τ, s) and ∆sC = C(τ, s+ ζ(z))−C(τ, s).
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Proof. Without loss of generality, let the price at time t of a pure-discount
bond that will mature at T be given as

f(t, s(t), x(t), T ) = P (s(t), r(t), τ) = eA(τ,s(t))+B(τ,s(t))r(t)+C(τ,s(t))r2(t)

where τ = T − t and A(0, s) = B(0, s) = C(0, s) = 0.
Theorem 2.3 then implies

r = −∂A(τ, s)
∂τ

− ∂B(τ, s)
∂τ

r − ∂C(τ, s)
∂τ

r2

+ [ã0(s) + ã1(s)r](B(τ, s) + 2C(τ, s)r)

+
1
2
σ(s)

(
2C(τ, s) +

(
B(τ, s) + 2C(τ, s)r

)2)
+
∫
E

(
e∆sA+∆sBr+∆sCr

2
− 1
)
eh̃0(z)+h̃1(z)r+h̃2(z)r2

1(s = i)εz(dz)

(3.10)

where ∆sA = A(τ, s+ ζ(z))−A(τ, s), ∆sB = B(τ, s+ ζ(z))−B(τ, s) and ∆sC =
C(τ, s+ ζ(z))− C(τ, s).

Using the log-linear approximation,

e(∆sB+h̃1)r+(∆sC+h̃2)r2
≈ 1 + (∆sB + h̃1)r + (∆sC + h̃2)r2,

and

eh̃1r+h̃2r
2
≈ 1 + h̃1r + h̃2r

2

we have (
e∆sA+∆sBr+∆sCr

2
− 1
)
eh̃0+h̃1r+h̃2(z)r2

=e(∆sA+h̃0)+(∆sB+h̃1)r+(∆sC+h̃2)r2
− eh̃0+h̃1rh̃2r

2

≈e(∆sA+h̃0)
(

1 + (∆sB + h̃1)r + (∆sC + h̃2)r2
)
− eh̃0

(
1 + h̃1r + h̃2r

2)

=eh̃0

(
e∆sA − 1

)
+
[
e∆sA+h̃0(∆sB + h̃1)− eh̃0 h̃1

]
r

+
[
e∆sA+h̃0(∆sC + h̃2)− eh̃0 h̃2

]
r2.

(3.11)

Theorem 3.4 follows by substituting the above approximation into (3.10) and
matching the coefficients on r on both side of the equation.

4. Conclusion

The regimes underlying the term structure of interest rates are shown to be
closely related to business cycle fluctuations in the previous studies. Thus the risk
of regime shifts is very likely to be a systematic risk . The term structure models
developed in the current paper offer flexible parameterizations of the market price
of regime-switching risk. Closed-form solutions for the term structure of interest
rates are obtained for both affine- and quadratic-type models using log-linear ap-
proximations. Such systematic risk of regime shifts is also likely to have important
implications for pricing interest rate derivatives (e.g. Singleton and Umantsev [26])
as well as for investors’ optimal portfolio choice problem (e.g. Campbell and Viceira
[8]). Moreover, motivated by the observation of persistent monetary policy actions
and their impact on interest rates, the models can be extended to the framework
of affine regime-switching jump diffusion for term structure of interest rates. These
extensions are left for future research.
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