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Generalized Cost Function Based Forecasting for
Periodically Measured Nonstationary Traffic

Balaji Krithikaivasan, Yong Zeng, Deep Medhi

Abstract— In this paper, we address the issue of forecast-
ing for periodically measured nonstationary traffic based
on statistical time series modeling. Often with time series
based applications, minimum mean square error (MMSE)
based forecasting is sought that minimizes the square of
the positive as well as the negative deviations of the forecast
from the unknown true value. However, such a forecast-
ing function is not directly applicable for applications
such as predictive bandwidth provisioning in which the
negative deviations (under-forecast) have more impact on
the system performance than the positive deviation (over-
forecast). For instance, an under-forecast may potentially
result in insufficient allocation of bandwidth leading to
short term data loss. To facilitate a differential treatment
between the under and the over-forecasts, we introduce
a generalized forecast cost function that is defined by
allowing different penalty associated with the under and
the over-forecasts. We invoke mild assumptions on the first
order characteristics of such penalty functions to ensure
the existence and uniqueness of the optimal forecast value
in the domain of interest. The sufficient condition on the
forecast distribution is that all the orders of the moments
are well-defined. We provide several possible classes of
penalty functions to illustrate the generic nature of the cost
function and its applicability from a dynamic bandwidth
provisioning perspective. A real network traffic example
using several classes of penalty functions is presented to
demonstrate the effectiveness of our approach.

I. I NTRODUCTION

One of the challenging issues that arises in a nonsta-
tionary network traffic environment is to ensure that the
resource requirements, in particular, bandwidth, of the
underlying traffic is met most of the time while avoid-
ing excessive allocation of resources as well. However,
nonstationary network traffic do exhibit cyclic pattern
at various seasonal cycles, i.e., on a daily (24-hour)
basis, a weekly basis, and so on. Consequently, a viable
option is to assess the expected peak requirement over
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a 24-hour window period and allocate the bandwidth
accordingly. Such an option, however, while resulting
in negligible data loss, leads to excessive allocation of
resources during the non-peak periods. Thus, there arises
a need to develop a traffic forecasting mechanism that
can predict the resource requirements ahead of time on
a finer scale (say, for every fifteen minutes) while taking
into account the relative importance of the under-forecast
and the over-forecast. Such an effective forecast can
then be translated into bandwidth requirement and be
provisioned in a pro-active manner.

The first step toward facilitating traffic prediction, is to
characterize the underlying traffic dynamics through an
appropriate stochastic model based on the available mea-
surements. In this context, statistical time series based
models have been proposed in the literature to model
and predict the short-term as well as long-term traffic
behavior in Internet backbone networks; for example,
see [2], [7], [9], [10], [11], [12]. The advantage of
using time series models lies in its ability to adapt the
prediction (derived from the model) based on a finite
moving window of traffic trace history. Consequently,
from the provisioning perspective, an effective band-
width envelope closely matching the traffic dynamics can
be obtained. The question arises then is that “what is an
effective forecasting strategy, assuming a best-fit model
is in place?”

Conventionally, a forecasting function that achieves
the minimum mean-square error (MMSE) among all the
possible forecast functions is sought in most applica-
tions. The reasons are two-fold: 1) the MMSE forecast
minimizes the square of the deviation of predicted value
in either directions from the unknown true value, 2) for
a larger class of distributions, MMSE forecast equals
the conditional expectation of the distribution which is
trivial to compute. From the bandwidth provisioning per-
spective, however, under-forecast (negative deviation),
which may be translated into data loss, should be treated
differently from the over-forecast (positive deviation),
which may decrease the utilization. In other words, a
weighted deviation function becomes more desirable for
the provisioning application. We introduce such a generic
forecast cost function framework that can accommo-
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date a weighted approach toward the forecast devia-
tions. Precisely, we can potentially associate different
penalty functions with the under and the over-forecasts
in the forecast cost function which is then minimized
to obtain the desirable optimal forecast subjected to the
corresponding penalties. Under the general setup of our
forecast cost function framework, we show that MMSE
forecast can always be obtained as a special but less
desirable case (see Section III-A.2).

Our major contribution in this work is that we in-
troduce a generalized penalty function approach that
accounts for both under and over-forecasts differently
and enumerate the sufficient conditions on these penalty
functions such that the existence and the uniqueness of
forecast value that minimizes the forecast cost function,
is guaranteed. For the derivation of this important result,
we assume that the knowledge of conditional forecast
distribution is available from the identification of a time
series model. In order for our result to hold, the forecast
distribution must belong to the class of distributions
for which all the moments are well-defined (less than
∞). In general, as long as a distribution has a moment
generating function, then all moments exist; this is a
fairly common assumption that includes distributions
such as normal, exponential, or log-normal distributions.

We illustrate the generality of our result by con-
sidering several classes of penalty functions that are
applicable in a real network. In particular, using a real
network data collected on the Internet link connecting
the University of Missouri–Kansas City to MOREnet,
we present quantitative results for the first and the
second order polynomial functions and piecewise linear
function. Our intent behind using the real network data is
to show the effectiveness of generic cost function based
forecast against the conventional MMSE forecast in a
real network. Furthermore, the quantitative results bring
out the impact of various parameters involved in deriving
the desirable optimal forecast.

The rest of the paper is organized as follows: We
present the generic forecast cost function in Section II
and prove the existence of a unique minimizer of such
a function under mild assumptions. In Section III, we
present various penalty functions that obey the assump-
tions from Section II to demonstrate the generality of our
result. In Section IV, we present a real network traffic
example to illustrate the applicability of our result to real
networks. Finally, we present a summary of the work.

II. GENERALIZED FORECASTCOST FUNCTION

Suppose, the traffic on a network link is measured
periodically (say, every fifteen minutes). A total oft− 1

such measurements yield a equally spaced time series
z1, z2, . . . , zt−1 where the subscripts represent the time
indices. Assume, the best-fit model is identified for the
time series through time series modeling methodologies.
Let Ft−1 be theσ-algebra generated byz1, z2, . . . , zt−1

and Ft−1(·) represent the one-step ahead conditional
distribution, givenFt−1 with the conditional density
function ft−1(·). It may be noted thatFt−1(·) is known
from the best-fit time series model and the observations
up to timet−1. Let zt be the traffic at timet and given
Ft−1, zt follows Ft−1(·). Let Et−1[zt] be the conditional
expectation with respect tozt givenFt−1 and z̃t be the
forecast at timet. Further, letU(z̃t, zt) and L(z̃t, zt)
refer to the generic penalty functions for over and under-
forecasts, respectively. Then, we define the total cost of
obtaining forecast̃zt as follows:

Ct(z̃t) = Et−1[ U(z̃t, zt) I{zt<z̃t}

+ L(z̃t, zt) I{zt>z̃t} ], (1)

where the indicator function is defined as

I{a>b} =

{

1 if a > b

0 otherwise.

Such a cost function (1) can be used for forecasting
for time-series based on models such as AutoRegres-
sive Integrated Moving Average (ARIMA) [5] and Au-
toRegressive Conditional Heteroskedasticity (ARCH)-
type models [6], [8] with i.i.d normal innovations. This
aspect will be discussed later in Section IV-A.

For a given forecast̃zt, the first term in (1) character-
izes the penalty due to over-forecast while the second
term characterizes the penalty due to under-forecast.
Furthermore, (1) can be written based on the linearity
of expectation as below:

Ct(z̃t) = Et−1[ U(z̃t, zt) I{zt<z̃t} ]

+Et−1[ L(z̃t, zt) I{zt>z̃t} ]

=

∫ z̃t

0

U(z̃t, zt) ft−1(zt) dzt

+

∫ ∞

z̃t

L(z̃t, zt) ft−1(zt) dzt. (2)

For notational convenience, we set

JU (a, b; z̃t) =

∫ b

a

U(z̃t, zt) ft−1(zt) dzt

JL(a, b; z̃t) =

∫ b

a

L(z̃t, zt) ft−1(zt) dzt

IU (a, b; z̃t) =

∫ b

a

∂U(z̃t, zt)

∂z̃t

ft−1(zt) dzt
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and

IL(a, b; z̃t) =

∫ b

a

∂L(z̃t, zt)

∂z̃t

ft−1(zt) dzt.

Thus, (2) can be rewritten as

Ct(z̃t) = JU (0, z̃t; z̃t) + JL(z̃t,∞; z̃t). (3)

We are interested in determiningz∗t such thatz∗t achieves
the minimum cost among all positivẽzt’s, i.e.,Ct(z

∗
t ) ≤

Ct(z̃t) for z̃t ∈ [0,∞]. It may be noted that since
the measurements (of traffic trace) are always positive,
we restrict the interval of definition for the conditional
distributionFt−1(·) of forecast to[0,∞].

Below, we enumerate a set of assumptions on the
penalty functionsU(z̃t, zt) and L(z̃t, zt) in order to
ensure that a unique minimizerz∗t exists for the forecast
cost function given in (2).

Assumption 1:

(i) For a given nonnegativẽzt, U(z̃t, zt) is a non-
increasing continuous function ofzt for zt ∈
[0, z̃t], and U(m, m) = 0 for m ∈ [0,∞] (see
Remark 2).

(ii) The partial derivative ofU(z̃t, zt) with respect to
z̃t exists almost everywhere and it is positive and
has at most a countable number of discontinuities
for zt in the interval [0, z̃t] for z̃t ∈ [0,∞], i.e.,
if PU is the set containing points of discontinuity
then,

∂U(z̃t, zt)

∂z̃t

> 0 for zt ∈ [0, z̃t)\PU .

(iii) For c1, c2 ∈ [0,∞] with c1 < c2,

∂U(z̃t, a)

∂z̃t

∣

∣

∣

z̃t=c1

≤
∂U(z̃t, a)

∂z̃t

∣

∣

∣

z̃t=c2

,

where0 < a < c1 and the partial derivative exists

at zt = a in the chosen interval, i.e.,
∂U(z̃t, a)

∂z̃t

is

non-decreasing iñzt.
Remark 1: In simple terms, the above means that
U(z̃t, zt), (i) is nonincreasing and continuous, (2) has the
partial derivative that exists almost everywhere, positive
and is at most countable discontinuities, and (iii) is
convex.
Remark 2:Condition (i) of Assumption 1 implies that
the closer the under-realizationzt to the given forecast
z̃t, the lesser the penalty due to over-forecast and the
penalty iszero if realization ofzt equals the forecast̃zt

(an ideal case).
Remark 3:Condition (i) of Assumption 1 further implies
that U(z̃t, zt) is bounded from above forzt ∈ [0, z̃t)
which impliesU(z̃t, zt) is Riemann integrable. Further-
more, ft−1(zt) being a probability density function,

is Riemann integrable as well. Thus,JU (0, z̃t; z̃t) is
Riemann integrable, i.e., it is well-defined.
Remark 4:SinceU(z̃t, zt) is bounded and non-increasing
continuous forzt ∈ [0, z̃t) it follows that the partial
derivative of U(z̃t, zt), if it exists, is bounded almost
everywhere forzt ∈ [0, z̃t). Then, following condition
(ii) of Assumption 1,IU (0, z̃t; z̃t) is Riemann integrable.

Assumption 2:
(i) For a given nonnegativẽzt, L(z̃t, zt) is a non-

decreasing continuous function ofzt for zt ∈
[z̃t,∞], and L(m, m) = 0 for m ∈ [0,∞] (see
Remark 6).

(ii) The partial derivative ofL(z̃t, zt) with respect to
z̃t exists almost everywhere and it is negative and
has at most a countable number of discontinuities
for zt in the interval(z̃t,∞] for z̃t ∈ [0,∞], i.e.,
if PL is the set containing points of discontinuity
then,

∂L(z̃t, zt)

∂z̃t

< 0 for zt ∈ (z̃t,∞]\PL.

(iii) For c1, c2 ∈ [0,∞] with c1 < c2,

∂L(z̃t, b)

∂z̃t

∣

∣

∣

z̃t=c1

≤
∂L(z̃t, b)

∂z̃t

∣

∣

∣

z̃t=c2

,

wherec2 < b < ∞ and the partial derivative exists

at zt = b in the chosen interval, i.e.,
∂L(z̃t, b)

∂z̃t

is

non-decreasing iñzt.
(iv) For a given nonnegativẽzt, JL(z̃t,∞; z̃t) is Rie-

mann integrable, i.e., it is well-defined (see Re-
mark 7).

(v) For a given nonnegativẽzt, IL(z̃t,∞; z̃t) is Rie-
mann integrable (see Remark 8).

Remark 5: In simple terms, the above means that
L(z̃t, zt) (i) is nonincreasing and continuous, (2) has
the partial derivative that exists almost everywhere, is
negative and is at most countable discontinuities, and
(iii) is convex. The other two conditions, (iv) and (v),
are technical integrability assumptions.
Remark 6:Condition (i) of Assumption 2 implies that
the farther the over-realizationzt to the given forecast
z̃t, the higher the penalty due to under-forecast and the
penalty iszero if realization ofzt equals the forecast̃zt

(an ideal case).
Remark 7:Condition (i) of Assumption 2 does not imply
that L(z̃t, zt) is bounded from above forzt ∈ (z̃t,∞].
Thus, condition (iv) is necessary forCt(z̃t) to be well-
defined.
Remark 8:Since the partial derivative ofL(z̃t, zt) may
not be bounded from above forzt ∈ (z̃t,∞], condition
(v) is necessary for the derivative ofCt(z̃t) with respect
to z̃t to exist.
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It may be noted that the setsPU andPL may be empty.
In other words,U(z̃t, zt) and L(z̃t, zt) may be defined
in such a way that their partial derivatives with respect
to z̃t is continuous forzt in the respective intervals.

Lemma 1:Let U(z̃t, zt) and L(z̃t, zt) be defined in
such a way that both Assumptions 1 and 2 hold, then
the first derivative of cost functionCt(z̃t) is a strictly
increasing continuous function of̃zt in the interval
[0,∞].

Proof: From (2), using Leibniz rule, we have

dCt(z̃t)

dz̃t

= [U(z̃t, z̃t) − L(z̃t, z̃t)]ft−1(z̃t)

+

∫ z̃t

0

∂U(z̃t, zt)

∂z̃t

ft−1(zt) dzt

+

∫ ∞

z̃t

∂L(z̃t, zt)

∂z̃t

ft−1(zt) dzt. (4)

Following condition (i) of Assumptions 1 and 2, the first
term in (4) vanishes. Then, (4) is simplified as

dCt(z̃t)

dz̃t

= IU (0, z̃t; z̃t) + IL(z̃t,∞; z̃t). (5)

Following Remark 3 and condition (v) of Assumption
2, both IU (0, z̃t; z̃t) and IL(z̃t,∞; z̃t) are Riemann in-
tegrable. Therefore, it is clearly evident that the first
derivative ofC(z̃t) is a continuous function of̃zt.

Let c1, c2 ∈ [0,∞] with c1 < c2 and define

D =
dCt(z̃t)

dz̃t

∣

∣

∣

z̃t=c2

−
dCt(z̃t)

dz̃t

∣

∣

∣

z̃t=c1

.

Then, it follows from (5) that

D = IU (0, c2; c2) + IL(c2,∞; c2) − IU (0, c1; c1)

−IL(c1,∞; c1)

= IU (0, c1; c2) + IU (c1, c2; c2) + IL(c2,∞; c2)

−IU (0, c1; c1) − IL(c1, c2; c1) − IL(c2,∞; c1)

= {IU (0, c1; c2) − IU (0, c1; c1)}

+ {IU (c1, c2; c2) − IL(c1, c2; c1)}

+ {IL(c2,∞; c2) − IL(c2,∞; c1)} . (6)

It may be noted that bothIU (a, b; m) and IL(a, b; m)
wherez̃t = m for somem > 0 are evaluated as follows:

IU (a, b; m) =

∫ b

a

∂U(z̃t, zt)

∂z̃t

∣

∣

∣

z̃t=m
ft−1(zt) dzt

and

IL(a, b; m) =

∫ b

a

∂L(z̃t, zt)

∂z̃t

∣

∣

∣

z̃t=m
ft−1(zt) dzt.

From condition (iii) of Assumption 1, we have

IU (0, c1; c2) − IU (0, c1; c1) ≥ 0 (7)

and from condition (iii) of Assumption 2, we have

IL(c2,∞; c2) − IL(c2,∞; c1) ≥ 0. (8)

Then, we also infer from condition (ii) of Assumption 1
that

IU (c1, c2; c2) > 0

and from condition (ii) of Assumption 2 that

IL(c1, c2; c1) < 0

implying

IU (c1, c2; c2) − IL(c1, c2; c1) > 0. (9)

Following (7), (8) and (9), we haveD > 0. Since,c1

andc2 are chosen arbitrarily, the lemma holds true.
Theorem 1:Under the Assumptions 1 and 2, there

exists a uniquez∗t such thatz̃t = z∗t minimizes the cost
function C(z̃t) among allz̃t ∈ [0,∞].

Proof: Since the first derivative of the cost function
C(z̃t) is a strictly increasing continuous function in the
interval [0,∞] (from Lemma 1), it should attain its
minimum at z̃t = 0 and its maximum at̃zt = ∞ in
the interval[0,∞]. Below, we investigate these boundary
values in order to prove the desired result.

Recall from (5) that

dC(z̃t)

dz̃t

= IU (0, z̃t; z̃t) + IL(z̃t,∞; z̃t).

Then, we have

dC(z̃t)

dz̃t

∣

∣

∣

z̃t=0
= IU (0, 0; 0) + IL(0,∞; 0). (10)

The first term in (10) vanishes, while the second term

IL(0,∞; 0) < 0 (11)

following condition (ii) of Assumption 2 implying that
theminimumvalue of the first derivative of cost function
is negative.

Similarly,

dC(z̃t)

dz̃t

∣

∣

∣

z̃t=∞
= lim

z̃t→∞
IU (0, z̃t; z̃t) + lim

z̃t→∞
IL(z̃t,∞; z̃t).

(12)

The second term in (12) vanishes, whereas the first term

lim
z̃t→∞

IU (0, z̃t; z̃t) > 0 (13)

as a result of condition (ii) of Assumption 1 implying
thereby that themaximumvalue of the first derivative of
cost function ispositive.

Then, from Weierstrass intermediate value theo-
rem [13], there exists at least onez∗t ∈ (0,∞) such
that the derivative vanishes. However, from Lemma 1, it
follows that z∗t should be unique thereby, guaranteeing
a unique minimizer for the cost functionC(z̃t).
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III. PENALTY FUNCTION - EXAMPLES

In this section, we exemplify the generality of class
of penalty functions from section II. In particular, we
consider penalty functions in the form of polynomial
functions and piecewise linear functions. For these exam-
ples, we also show that all the assumptions stated above
are satisfied.

A. Polynomial functions

Consider the following:

U(z̃t, zt) = κ1(z̃t − zt)
n

L(z̃t, zt) = κ2(zt − z̃t)
n,

where constantsκ1, κ2 > 0 and n is a positive integer
(n ≥ 1). Note that these functions form a natural
generalization of conventional MMSE forecast function;
for example, if we setn = 2 andκ1 = κ2 = 1, then it
reduces to the MMSE forecast function. Parametersκ1

andκ2 allow a user to assign different weights to under
and over forecast.

Clearly, the above polynomial function satisfies con-
dition (i) of Assumption 1 and also condition (i) of
Assumption 2. Below, we show that the rest of conditions
are satisfied as well.

(a)

∂U(z̃t, zt)

∂z̃t

= κ1 n (z̃t − zt)
n−1,

which is greater than zero forzt ∈ [0, z̃t) and
equals to zero ifzt = z̃t. It is evident thatPU

is a null set (no discontinuities). Similarly,

∂L(z̃t, zt)

∂z̃t

= −κ2 n (zt − z̃t)
n−1,

which is less than zero forzt ∈ (z̃t,∞] and
equals to zero ifzt = z̃t. Again, PL is also a
null set (no discontinuities). Thus, condition (ii)
of Assumptions 1 and 2 are satisfied.

(b) For c1, c2 ∈ [0,∞] with c1 < c2 and n > 1, we
have

∂U(z̃t, a)

∂z̃t

∣

∣

∣

z̃t=c1

<
∂U(z̃t, a)

∂z̃t

∣

∣

∣

z̃t=c2

,

where0 < a < c1. Similarly, we have

∂L(z̃t, b)

∂z̃t

∣

∣

∣

z̃t=c1

<
∂L(z̃t, b)

∂z̃t

∣

∣

∣

z̃t=c2

,

wherec2 < b < ∞. Forn = 1, we have an equality
relationship in both the cases. Thus, condition (iii)
of Assumptions 1 and 2 are satisfied.

(c) For the givenL(z̃t, zt), JL(z̃t,∞; z̃t) can be ex-
pressed in terms of the firstn moments of the

forecast distribution. Since, all the moments of
the forecast distribution are assumed to be well-
defined andn is finite, condition (iv) of Assump-
tion 2 is satisfied. Furthermore,IL(z̃t,∞; z̃t) can
also be expressed in terms of the firstn − 1
moments of the forecast distribution following
(a). Thus, condition (v) of Assumption 2 is also
satisfied.

Thus, if the penalty functionsU(z̃t, zt) andL(z̃t, zt) are
polynomial functions of the form given above, following
Lemma 1 and Theorem 1, it can be established that the
forecast cost function given in (2) has a unique minimum
z∗t . Observe that whenn ≥ 1 for any real number, parts
of (a), (b) and (c) in the beginning of this section remain
true. Thus, Theorem 1 implies the existence of the unique
minimizer. Whenn ∈ (0, 1), for example,n = 1/2, then
the Assumptions 1(iii) and 2(iii) fail and Theorem 1 does
not apply.

Below, we briefly illustrate how to computez∗t for the
first order and the second order polynomials (n = 1 and
n = 2) based on the results from [11]. The derivations
of these results are also presented in detail in [11].

1) Computation ofz∗t for casen = 1: For n = 1,
after replacing the factorsκ1 and κ2 using a ratior,
i.e., r =

κ1

κ2

with r < 1 (i.e., more penalty for under-

forecasting), we obtain the penalty functions as follows:

U(z̃t, zt) = r(z̃t − zt)

L(z̃t, zt) = (zt − z̃t).

Upon substituting these penalty functions in (1) and
minimizing the resulting cost function, we obtain the
following result:

Ft−1(z̃t) −
1

1 + r
= 0, (14)

where Ft−1(z̃t) = P [zt ≤ z̃t | Ft−1]. The required
optimal forecastz∗t is the value ofz̃t that satisfies (14).
In other words,z∗t is the( 1

1+r
)th quantile ofFt−1. When

r = 1, z∗t is the median ofFt−1. In fact, for r > 1,
we still havez∗t satisfying equation of the form (14) by
replacingr with r̃ = 1

r
in (14).

Since, Ft−1(z̃t) is a strictly increasing function of
z̃t for any given distribution, (14) can be solved nu-
merically using a binary search algorithm. Forr < 1
(the desirable range), the lower and upper limits for
the search algorithm can be taken as the value ofzt

corresponding to the median and the maximum capacity
of the provisioning system respectively. The convergence
rate of the search algorithm depends on the conditional
distribution obtained from the fitted time series model.
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2) Computation ofz∗t for casen = 2: Similar to the
casen = 1, we obtain the penalty functions forn = 2
as follows:

U(z̃t, zt) = r(z̃t − zt)
2

L(z̃t, zt) = (zt − z̃t)
2.

Upon substitution in (1) followed by minimization, we
obtain the optimal forecastz∗t to be the value of̃zt that
satisfies

z̃t − G(z̃t) = 0, (15)

(a fixed-point equation) where

G(z̃t) =
Et−1[zt] − (1 − r) Qt−1(z̃t)

1 − (1 − r) Ft−1(z̃t)
(16)

with 0 < r < 1 and

Qt−1(z̃t) =

∫ z̃t

0

zt ft−1(zt) dzt.

For r > 1, we obtain

G(z̃t) =
r̃ Et−1[zt] + (1 − r̃) Qt−1(z̃t)

r̃ + (1 − r̃) Ft−1(z̃t)
. (17)

The uniqueness ofz∗t shown above for any integral
values ofn guarantee the uniqueness of the fixed-point
satisfying (15). Note here that forr(r̃) = 1, (17)
becomesG(z̃t) = Et−1[zt] and the optimal forecastz∗t
is the conditional mean of the distributionFt−1(·) iden-
tified from the time series model. Thus, the conditional
meanEt−1[zt] can be taken as the initial value ofz̃t for
the fixed-point iteration algorithm for any givenr < 1 or
r̃ < 1. The following steps briefly illustrates the fixed-
point iteration.

(i) Assume the initial value of̃zt = Et−1[zt].
(ii) ComputeG(z̃t) using (16).

(iii) If the current value ofz̃t equalsG(z̃t) obtained
from step (ii), stop the iteration andz∗t = z̃t.
Otherwise, proceed to the next step.

(iv) Assign z̃t = G(z̃t) and go to step (ii).

Since (15) has a unique fixed-point, the convergence of
the iterative algorithm is guaranteed. Furthermore, it may
be noted that the conditional mean of the distribution is
also the MMSE forecast for any linear time series sys-
tem. Thus, it is evident that we obtain MMSE forecast as
a special case of second order polynomial cost function
with equal costs for both under and over-forecasts. In
other words, MMSE forecast matches with a particular
instance of cost function less useful in reality. For further
details, see [11].

3) Remarks on non-integral values ofn: A more
general case could be consideringn to be rational. In par-
ticular,n can be chosen from the subset{1

2
, 1, 3

2
, 2, . . . .}

of set of rational numbers. It can be shown that ifn = 1
2

(i.e., square root function), not all of the conditions will
be satisfied and hencez∗t is not well defined in that case.
However, these conditions are satisfied for polynomial
functions forn ≥ 1 in that subset. In fact, for all rational
n ≥ 1, it can be shown that a unique minimizerz∗t exists.
Furthermore, the result can be generalized to any real
n ≥ 1.

B. Piecewise Linear Functions

We now consider penalty functions in the form of
piecewise linear functions. These functions form a spe-
cial case of first order polynomial functions. Essentially,
these functions enable us to impose penalty in a non-
uniform manner depending upon the interval on the
number axis in which the magnitude of the deviation
error falls into. For example, in a real network, it may
be desirable to consider a smaller penalty factor for
the deviation error up to 20% of unknownzt while, a
relatively greater penalty factor if deviation error exceeds
20%. In fact, such a notion might be further extended
considering more intervals. Here, we consider represen-
tations forU(z̃t, zt) and L(z̃t, zt) with n sub-intervals,
i.e., the intervals[0, z̃t] and [z̃t,∞] are divided inton
sub-intervals in which the penalty functionsU(z̃t, zt) and
L(z̃t, zt) assume different linear forms, respectively.

Fig. 1 shows an example ofU(z̃t, zt) with 4 sub-
intervals while Fig. 2, shows an example forL(z̃t, zt)
with 4 sub-intervals.

Now, we present the general representation as follows:

U(z̃t, zt) =























b1z̃t − m1zt a0z̃t ≤ zt ≤ a1z̃t

b2z̃t − m2zt a1z̃t ≤ zt ≤ a2z̃t

...

bnz̃t − mnzt an−1z̃t ≤ zt ≤ anz̃t

(18)

and

L(z̃t, zt) =























m′
1zt − b′1z̃t a′0z̃t ≤ zt ≤ a′1z̃t

m′
2zt − b′2z̃t a′1z̃t ≤ zt ≤ a′2z̃t

...

m′
nzt − b′nz̃t a′n−1z̃t ≤ zt ≤ a′nz̃t,

(19)

wherea0 = 0 < a1 < a2 < . . . < an = 1 and a′0 =
1 < a′1 < a′2 < . . . < a′n < ∞. In order to ensure
zero penalty whenzt equalsz̃t (following condition (i)
of Assumptions 1 and 2), we considerbn = mn and
b′1 = m′

1. Choosem1 > m2 > . . . > mn−1 > mn (to be
consistent with the notion of imposing higher penalty for
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higher deviation) and then, the continuity ofU(z̃t, zt) is
ensured by computingbn’s as follows:

bk = bk+1 + ak(mk − mk+1) k = 1, 2, . . . , n − 1.

(20)

Similarly, choosem′
1 < m′

2 < m′
3 < . . . < m′

n and then,
the continuity ofL(z̃t, zt) is guaranteed by choosingb′n’s
as follows:

b′k+1 = b′k + a′k(m
′
k+1 − m′

k) k = 1, 2, . . . , n − 1.

(21)

It can be easily verified that condition (i) of Assump-
tions 1 and 2 is satisfied here. Below, we investigate all
the other conditions:

(a)

∂U(z̃t, zt)

∂z̃t

=























b1 0 ≤ zt < a1z̃t

b2 a1z̃t < zt < a2z̃t

...

bn an−1z̃t < zt ≤ anz̃t,

which is clearly positive since{bk}
n
k=1 > 0. How-

ever, at pointsakz̃t, k = 1, 2, . . . , n−1, the partial
derivative does not exist (n − 1 discontinuities).
Similarly,

∂L(z̃t, zt)

∂z̃t

=























−b′1 z̃t ≤ zt < a′1z̃t

−b′2 a′3z̃t < zt < a′2z̃t

...

−b′n a′n−1z̃t < zt ≤ a′nz̃t,

which is negative since{b′k}
n
k=1 > 0. We also have

n − 1 points of discontinuity here.
(b) For c1, c2 ∈ [0,∞] with c1 < c2, it readily follows

from (a) that

∂U(z̃t, p)

∂z̃t

∣

∣

∣

z̃t=c1

≤
∂U(z̃t, p)

∂z̃t

∣

∣

∣

z̃t=c2

∂L(z̃t, q)

∂z̃t

∣

∣

∣

z̃t=c1

≤
∂L(z̃t, q)

∂z̃t

∣

∣

∣

z̃t=c2

,

where0 < p < c1 andc2 < q < ∞.
(c) For a givenL(z̃t, zt), JL(z̃t,∞; z̃t) can be ex-

pressed in terms of the first moment of the forecast
distribution. Thus, condition (iv) of Assumption 2
is satisfied. Since the partial derivatives ofL(z̃t, zt)
evaluates to a constant value in each of then sub-
intervals, it follows that condition (v) of Assump-
tion 2 is also satisfied.

Thus, the piecewise linear functions of the form given
above with at most countable number of regions (inter-
vals), satisfy all the imposed conditions. It then follows
that we have a uniquez∗t that minimizes the cost func-
tion.

For the piecewise linear functions given above, the
cost function is given as follows:

C(zt) =

n
∑

i=1

{
∫ aiz̃t

ai−1z̃t

(biz̃t − mizt) ft−1(zt) dzt

}

+

n
∑

j=1

{

∫ a′

j z̃t

a′

j−1
z̃t

(m′
jzt − b′j z̃t) ft−1(zt) dzt

}

.

(22)

wherea0 = 0, an = a′0 = 1, a′n = ∞. Upon differen-
tiating (22) with respect tõzt and equating to zero, we
obtain (after simplification):

n−1
∑

i=1

(bi − bi+1)Ft−1(aiz̃t) + (bn + b′1)Ft−1(z̃t)

+
n−1
∑

j=1

(b′j+1 − b′j)Ft−1(a
′
j z̃t) = b′n. (23)

Below, we briefly illustrate the computational aspects of
step functions (used as penalty functions) for the cases
n = 1 andn = 2, i.e., functions with one and two sub-
intervals.
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1) Computation ofz∗t for n = 1: It can be observed
that for n = 1, (23) can be simplified as follows:

Ft−1(z̃t) =
b′1

b1 + b′1
. (24)

In particular, if b1 = m1 = κ1 and b′1 = m′
1 =

κ2, then (24) becomes equivalent to (14). Thus, the
computation of optimal forecastz∗t is similar to that of
first order polynomial case described in Section III-A.1.

2) Computation ofz∗t for n = 2: When we have
step functions with two sub-intervals (n = 2) as penalty
functions, simplifying (23) yields the following linear
relation:

b1

∫ a1z̃t

0

ft−1(zt)dzt + b2

∫ z̃t

a1z̃t

ft−1(zt)dzt

− b′1

∫ a′

1
z̃t

z̃t

ft−1(zt)dzt − b′2

∫ ∞

a′

1
z̃t

ft−1(zt)dzt = 0.

(25)

Without loss of generality, considerb2 = m2 = r and
b′1 = m′

1 = 1.0. Using the relations from (20) and (21),
the linear relation (25) can be shown to be equivalent to

a1(m1 − r)Ft−1(a1z̃t) + (1 + r)Ft−1(z̃t)

a′1(m
′
2 − 1)Ft−1(a

′
1z̃t) = 1 + a′1(m

′
2 − 1). (26)

SinceF (·) is a strictly increasing function, (26) can be
solved for the optimalz∗t using a binary search algorithm
similar to that ofn = 1 case. The lower and upper limits
for the search algorithm can be appropriately chosen
based on the known constantsa1, a

′
1, m1 and m′

2. The
convergence rate of the search algorithm depends upon
the conditional distribution of the forecast model.

IV. A R EAL NETWORK TRAFFIC EXAMPLE

In this section, we first present a summary of the
time series model obtained for a real network example;
a detailed discussion can be found in [10]. We then
demonstrate the quantitative results for the first and the
second order polynomial penalty functions, followed by
results for a piecewise linear penalty function with two
sub-intervals.

A. Data sets and Time series modeling

The measurements are collected on the Internet link
connecting the University of Missouri–Kansas City
(UMKC) to MOREnet (a Internet Service Provider)
using a Multi Router Traffic Grapher (MRTG) traffic
monitoring system; these measurements represent the
nonstationary data rate of the traffic from outside world

to UMKC averaged over every 5-minute interval (gran-
ularity). We have grouped the measurements into three
data sets referred to as data set I, data set II and data
set III. Each data set spans measurements over 24-hours
for 15 days excluding weekends and any holidays as
our interest is to model for the weekday behavior. The
measurements are collected in the months of September,
November and December of year 2003. For further
details on data sets, see [10], [11]. The first ten days’
data from the data sets were used in determining the
parameters’ estimates and then, tested on our model over
the next five days.

First, we have averaged three successive sample points
(of 5 minutes each) of the collected measurements to
obtain the data rate over every 15-minute interval. Our
intent behind this aggregation is under the assumption
that a service provider may not want to do bandwidth
updates (based on forecasts) more frequently then every
fifteen minutes; this also gives us one-step prediction to
look out for the next fifteen minutes. Note that this is
done for the purpose of our study and the time series
model presented is quite general. Over ten days, we
thus consider 960 samples for model identification in
each data set with 96 samples per day. In general, we
denote the sample size per day usingT ; for this study,
T happens to be 96. Fig. 3 shows a less-detailed view
of 15-minute aggregate data rate observed in data set I
while Fig. 4 shows a detailed view of the day 1 traffic
data rate from data set I. A similar coarse-level behavior
is observed in the other two data sets as well.

The first obvious observation from Fig. 3 is the
evidence of the time-of-the-day effect. In a wider sense,
the data rate behavior over any given weekday is similar
to that of any other weekday in the sample. However, we
have observed a few noticeable peaks on certain days in
the data sets. For example, relatively higher peaks can
be observed on day 1, day 6 and day 8 than the rest
in Fig 3. These peaks result in outliers (data points that
are extreme relative to the rest of the sample) that can
distort the innovation distribution as well as the statistical
estimates of the parameters of the resulting model.
Nevertheless, these outliers are genuine and essential in
characterizing the traffic dynamics since they might arise
due to the inherent variability of the underlying traffic.
Thus, we do not eliminate them in our analysis; rather,
we transform the aggregated time series using the natural
logarithmic transformation. Such a transformation is
shown to be quite effective in stabilizing the data points
(free of outliers). Following this transformation, based
on the auto-correlation function, we identified the need
for first differencing as well as seasonal differencing
(based on durationT ) in order to obtain a stationary
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Fig. 4. Data set I: Detailed view of Day-1 (D1)

series of first order. In the resulting stationary series,
we observed the presence of the clustering of large
values and small values. Such a clustering effect arises
primarily from the strong dependence of the innovation
variance at any given sample point over the innovation
variance of past sample points, i.e., innovation variance
is correlated. In order to model this dependency, we
include a conditionally heteroskedastic component as
a part of the model. Thus, the time series model so
obtained for the transformed series is a seasonal ARCH-
type model where we restrict the process model for
innovation (disturbances) to Gaussian distribution.

Let zt represent the observed time series andwt

represent the log transformed series i.e.,wt = ln zt.
Then, the stationary seriesyt of first order obtained
after the differencing operation at two levels is given
as follows:

yt = (wt − wt−1) − (wt−T − wt−T−1). (27)

Following the discussion above, the proposed seasonal
ARCH model for the transformed seriesyt is given
below:

yt =

4
∑

i=1

ϕiyt−i +

2
∑

j=1

φjyt−jT + εt (28a)

εt = ηt

√

ht (28b)

ht = α0 + α1ε
2
t−1. (28c)

The unknown parameters of the model (28) are:{ϕi}
4
i=1

(autoregressive coefficients),{φj}
2
j=1 (seasonal autore-

gressive coefficients),α0 (ARCH intercept) andα1 (first
order ARCH co-efficient). Here,ηt is an independent and
identically distributed normal random variable with zero
mean and unit variance. However, it should be noted
that εt are merely uncorrelated and not independent
(higher moments may be correlated), i.e.,E[εtεt−1] = 0
and E[ε2

t ε
2
t−1] 6= 0. It follows then, the conditional

distribution of εt given the information up to and in-
cluding timet − 1. is normal with mean 0 and variance

ht. The proposed model for seriesyt is chosen from
various candidate models based on the smallest Bayesian
Information Criterion (BIC) [5] (a commonly adopted
conservative model selection criterion). For this model
identification and estimation procedure, we used SAS,
a well-known software package [14]. The parameters of
the model are estimated based on the sample maximum
likelihood function conditioned on the first10T obser-
vations; see [5], [8] for more details on the statistical
inference of the time series models. We present the
estimates of all the parameters along with theirt-values
in Appendix I for data set I. For the other data sets,
the estimates of these parameters are indeed different;
however, the order of the model remains the same
as (28). It may be noted that the estimate ofα1 is
highly statistically significantfrom zero (i.e., at the 99%
significant level to reject the null hypothesis that it is
zero). Such a high statistical significance for the estimate
of α1 is observed in other two data sets as well. Thus,
the ARCH-effect is justified.

It is evident from (28a) that the distribution of one-step
ahead forecast ofyt is normally distributed with mean
Et−1[yt] and varianceht. The reason that we restrict
ourselves to one-step ahead forecasts is to make use of
the new observation (zt) as soon as it is available. Using
relation (27) andwt = ln zt, we can express (28a) in
terms ofzt as follows:

ln zt =
5

∑

i=1

χi ln zt−i +
T+5
∑

j=T

χj ln zt−j +
2T+1
∑

k=2T

χk ln zt−k

+
3T+1
∑

s=3T

χs ln zt−s + εt, (29)

where χ’s are computed from the linear and the sea-
sonal autoregressive coefficients,ϕ and φ, respectively,
from (28a). The one-step ahead minimum mean square
error (MMSE) forecast̃zt of zt (the desired quantity) at
time t−1 is given byEt−1[e

ln zt ], which can be obtained
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from (29) as shown below. Let

Ct−1 =
5

∑

i=1

χi ln zt−i +
T+5
∑

j=T

χj ln zt−j +
2T+1
∑

k=2T

χk ln zt−k

+
3T+1
∑

s=3T

χs ln zt−s. (30)

It may be noted thatCt−1 is completely known at time
t. Thus,

Et−1[e
ln zt ] = eCt−1 Et−1[e

εt ]

= eCt−1 e
ht

2 . (31)

Since, the conditional distribution ofεt follows a normal
distribution, we haveeεt to follow a “lognormal” distrib-
ution. Then, it follows from (31) that given the informa-
tion up to and including timet − 1, zt is conditionally
lognormally distributed with meanµt and varianceσ2

t

where

µt = eCt−1e
ht

2 (32)

σ2
t = e2Ct−1 eht(eht − 1). (33)

Note that all the moments of a lognormally distributed
random variable are well-defined and hence the random
variablezt has well-defined moments. Consequently, an
optimal forecastz∗t can always be obtained for penalty
functions satisfying Assumptions 1 and 2 listed in Sec-
tion II based on (1). The optimality of the forecast is
based on the nature and the relative magnitude of the
penalty components associated with the under and over-
forecasts.

In the following sections, we evaluate the forecasting
results based on polynomial penalty functions (first and
second order) and piecewise linear penalty functions
(with two sub-intervals) against the MMSE forecast as
applied to Day-11 of data sets. Toward this end, we
consider three metrics: (i) Fractional Increase in error
due to Over-Forecast (FIOF), (ii) Fractional Decrease
in error due to Forecast Misses (FDFM), and (iii) Dif-
ference in the number of Forecast Misses (DFM). Let
the cumulative error observed due to the over-forecast
and the under-forecast for the forecasting schemeS be
denoted byCEof

S andCEuf
S , respectively. Furthermore,

let NFMS be the number of forecast misses observed
for the forecasting schemeS. Then, the metrics are
defined as follows:

FIOFS =
(CEof

S − CEof
MMSE)

CEof
MMSE

(34)

FDFMS =
(CEuf

S − CEuf
MMSE)

CEuf
MMSE

(35)

DFMS = NFMS − NFMMMSE . (36)

Note that the schemeS refers to one among the first
order polynomial case, the second order polynomial case
and the piecewise linear function case.

For space considerations, we present our results pri-
marily for data set I. Nevertheless, we present plots
in several figures, which also include results for data
sets II and III for comparison. We first present the
cumulative under and over-forecast and the number of
forecast misses associated with the MMSE forecast in
Table I. These values help us to comprehend the results
on the three metrics in a better manner.

TABLE I

MMSE FORECAST DETAILS FORDATA SET I

CE
of
MMSE CE

uf
MMSE NFMMMSE

10065445.29432951 7921418.801668145 41

B. Results for first and second order polynomial func-
tions

For ease of discussion, henceforth, we refer to the
first order and the second order case as the “linear”
and the “quadratic” scheme, respectively. Most of our
discussions here will be for results based on data set
I, while in some of the figures we also report results
for data sets II and III for the purpose of comparison.
In Fig. 5, we have shown the one-step ahead forecast
envelope for the linear and quadratic penalty functions
along with the MMSE forecast envelope forr = 0.1.
For clarity, the samples are shown from near the end of
Day-10 to the end of Day-11, split over three parts.

Notice from Fig. 5 that there is a distinct gap between
the MMSE forecast envelope and the other two forecast
envelopes. Whenr = 0.1, the penalty factor associated
with the under-forecast is ten times that of over-forecast
due to which, the forecast envelope associated with the
linear and the quadratic scheme is much above that of
the MMSE forecast envelope. Asr increases, the gap
decreases and eventually for a particularr value, the
modified forecast envelope coincides with the MMSE
forecast envelope. In particular, in the case of quadratic
forecast scheme, it can be recalled from Section III-
A.2 that the modified forecast envelope coincides with
the MMSE forecast envelope whenr = 1.0. On the
other hand, for the linear scheme, the modified forecast
envelope coincides with the MMSE forecast envelope
for some r < 1.0. In other words, forr = 1.0, the
modified forecast envelope falls below the MMSE fore-
cast envelope. This is due to the fact that the modified
forecast coincides with the “median” of the conditional
forecast distribution forr = 1.0 which isalways smaller
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Fig. 5. MMSE forecast curve along with linear and quadratic scheme based forecast, shown from near the end of Day-10 (D10) to the end
of Day-11 (D11); split over three parts to show finer details
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Fig. 7. FIOF and FDFM for linear scheme

than the mean (MMSE forecast) in the case of lognormal
distribution. In fact, we computed the value ofr required
at each time instant in order to obtain the MMSE forecast
from the forecast cost function associated with the linear
scheme. For convenience, we denote this ratio byrm;l

t .
Then,rm;l

t can be computed at any instantt using (37)
from (14).

rm;l
t =

1

F (zm
t )

− 1, (37)

where zm
t is the MMSE forecast at timet. Fig. 6

illustratesrm;l
t for all time instants from near the end

of Day-10 to the end of Day-11 for data set I. As can
be noticed,rm;l

t stays close to 0.85 (less than 1.0) with
occasional little fluctuations.

In Figs. 7 and 8, we illustrate the results of FIOF
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Fig. 8. FIOF and FDFM for quadratic scheme
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Fig. 9. DFM for linear scheme
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Fig. 10. DFM for quadratic scheme

and FDFM for variousr values. One of the major
observation is that we always achieve a higher FIOF and
FDFM with the linear scheme than with the quadratic
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Fig. 11. MMSE forecast curve along with piecewise linear function basedforecast, shown from near the end of Day-10 (D10) to the
end of Day-11 (D11); split over three parts to show finer details

scheme. Forr closer to zero, we notice approximately
an exponential increase in FIOF for both the schemes
due to an extensive bias toward avoiding under-forecast.
For example, whenr = 0.1, we observe around a
80% and 70% decrease in error due to under-forecast
with an approximate 300% and 200% increase in error
due to over-forecast respectively, for the linear and the
quadratic scheme. Asr increases, we witness a gradually
decaying gain in FDFM while a gradual decrease in
FIOF, eventually converging to zero gain/loss from that
of MMSE forecast. Note that forr = 0.9 onward, FDFM
becomes positive while FIOF becomes negative in the
case of linear scheme implying an inferior performance
with respect to the MMSE forecast scheme. Such a
behavior is attributed to the fact that the forecast from
the linear scheme coincides with the MMSE forecast for
r in the neighborhood of 0.85 (see Fig. 6). Furthermore,
we present the decrease in forecast misses associated
with the linear and the quadratic schemes with respect
to the MMSE forecast in Figs. 9 and 10. A significant
decrease is observed in the number of forecast misses
for values ofr closer to zero, supporting the observed
behavior of FDFM in Figs. 7 and 8. Upon increasingr,
DFM converges toward zero. In particular, DFM reaches
zero whenr = 1.0 with the quadratic scheme while it
becomes positive with the linear scheme. This behavior
is consistent with the observation made in Figs. 9 and 10.

In summary, for the quadratic scheme, the optimal
forecastz∗t at time t is always above that of MMSE
forecastzm

t at time t, as long asr lies in the open
interval (0, 1). On the other hand, for the linear scheme,
the optimal forecastz∗t at time t will be above that of
MMSE forecast forr taking values in the open interval
(0, a) and will fall below the MMSE forecast forr taking
values in the closed interval[a, 1] for somea < 1.0. The
value of a, however, depends on the parameters of the
conditional forecast distribution, which is lognormal in
our case.

C. Results for Piecewise Linear Function(n = 2)

It is evident from (26) that the parameters involved in
computing the optimalz∗t are:r, a1, m1, a′1, m′

2. In our
evaluation exercises, we considerm1 = rm′

2 and a′1 =
1

a1

. This means that the parameters involved are:r, a1

andm′
2. The implication of choosingm1 = rm′

2 here is
to reduce the slope of the linear functions associated with
the over-forecast (U(z̃t, zt)) in each interval uniformly
by a factor of 1 − r relative to the respective linear
functions associated with the under-forecast (L(z̃t, zt)).

Fig. 11 shows the one-step ahead forecast envelope
for two sets of values for the parameters in the order
(r, a1, m

′
2) along with MMSE forecast envelope. Similar

to the case of polynomial penalty functions, for clarity,
the samples are shown from near the end of Day-10 to
the end of Day-11 split over three parts. It is evident
from Fig. 11 that the forecast envelopes corresponding
to (0.1, 0.7, 10) and (0.1, 0.9, 10) are well above the
MMSE forecast envelope. In other words, values of
r closer to zero yields a more conservative forecast
envelope than the MMSE forecast envelope. As we
increaser while keeping botha1 and m′

2 constant, the
slope of the linear functions associated withU(z̃t, zt)
increases which, in turn, brings the forecast envelope
closer to the MMSE envelope. The choices ofa1 and
m′

2 primarily control the value ofr that brings down
this gap to a negligible level. For convenience, we use
the notationrm;pl

t to refer to the value ofr that yields
the MMSE forecast at timet for some givena1 and
m′

2. To computerm;pl
t at any instantt, we solve (38)

for r obtained from (26) by substitutinga′1 =
1

a1

and

m1 = rm′
2 to obtain:

rm;pl
t =

1

a1

(m′
2 − 1){1 − F

(

zm
t

a1

)

} + {1 − F (zm
t )}

{F (zm
t ) + a1(m′

2 − 1)F (a1zm
t )}

,

(38)

wherezm
t is the MMSE forecast at timet.
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Fig. 12 illustratesrm;pl
t for the two cases discussed

above. The average values ofrm;pl
t for the cases(a1 =

0.7, m′
2 = 10) and (a1 = 0.9, m′

2 = 10) are 1.01
and 0.96, respectively. As can be observed, the variation
around the average is very minimal. Furthermore, we
notice that the path ofrm;pl

t over time for the case
(0.7, 10) resembles an approximate mirror image of
the case(0.9, 10). This near symmetrical behavior is
possibly due to the inverse proportionality relationship
betweena1 anda′1.

In Fig. 13, we illustrate the results of FIOF and FDFM
for various r values where the zero axis is associated
with the MMSE forecast. For instance, whenr = 0.1,
i.e., for the case(0.1, 0.7, 10), we observe around70%

decrease in error due to under-forecast (forecast misses)
with an approximate200% increase in error due to
over-forecast. These values substantiate the observation
made in Fig. 11 regarding the significant gap between
the modified forecast envelope and the MMSE forecast
envelope. Note that on increasingr, gain in FDFM
decays gradually along with a gradual decrease in FIOF.
Since the average value ofrm;pl

t for the case(0.7, 10)
is just above 1.0, FDFM and FIOF remain negative
and positive, respectively, even withr = 1.0. For
completeness, the difference in forecast misses (DFM)
is presented in Fig. 14.

To summarize, if piecewise linear functions withn =
2 sub-intervals are used as penalty functions, the optimal
forecastz∗t at any instantt for a givenr in the half-closed
interval (0, 1], depends on a few parameters. In our
study, the parameters that control the modified forecast
are reduced to two;a1 andm′

2. However, this need not
be the case in practice. In other words, there might not
exist any dependencies betweena1 anda′1 andm1 and
m′

2 as considered here. In any case, the choice of the
values for these four parameters influences the optimal
forecastz∗t at any instantt.

In the case of data set II and data set III, a similar
overall trend is observed for the FDFM, the FIOF and
the DFM metrics with respect to increasingr in the
half-closed interval(0, 1] though the absolute values may
vary; this trend can be seen in Figs. 13 and 14.

V. SUMMARY

In this paper, we sought to differentiate the impact of
under-forecast and over-forecast on the network perfor-
mance by presenting a generic forecast cost function.
This function, upon minimization, yields the desired
forecast subjected to given penalties. Such an approach
toward deriving forecast is especially more desirable in
the context of adaptive bandwidth provisioning where
the data loss (arising from under-forecast) is a more
stringent criterion than the under-utilization of band-
width (due to over-forecast). Our results hold for forecast
distributions for which moments are well defined; this is
a fairly general assumption that holds for distributions
such as normal, exponential or log-normal distributions.
In some practical situations, heavy-tailed distributions
might be encountered, which do not have all the orders
of moments well-defined. In such cases, an approximate
method can be used, as described in [10].

We have enumerated a few mild assumptions on the
first-order characteristics of penalty functions, respec-
tively for data loss and under-utilization, that guarantee
the existence of a unique forecast under the generic cost
function framework.
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We considered various classes of functions that can
be candidate penalty functions in a real network. In
particular, when penalty functions belong to polynomial
classes of functions, they yield equations that are com-
putationally easy to solve. In fact, we have presented the
forecast equations (to be solved to obtain the desirable
forecast) for the first and the second order polynomial
functions. We have shown that the MMSE forecast can
be obtained as a special case of second order polynomial
function.

To assess the effectiveness of our approach, we pre-
sented quantitative results for the polynomial class of
functions and piece-wise linear functions as applied to
real world traffic measurements. One of the inferences
from these exercises is that MMSE forecast can always
be obtained as a special case from the corresponding
forecast cost function. Such special cases however, turns
out be less desirable from the bandwidth provisioning
perspective. Thus, our approach toward prediction can be
more general with respect to provisioning of bandwidth
in a real network. The forecasting models proposed hare
can be automated in a monitoring environment.

It may be noted that there is no one-size-fits-all time
series model for all types of network traffic patterns and
conditions. In a related work [10], we have noted that the
time-series model is relatively stable for a link, but the
coefficients of the model may change from time to time
and should be updated. Since the measurement data we
collected on UMKC’s Internet link is primarily TCP-
based, the general model is expected to be useful for
TCP-based traffic, however, only at the aggregate level.
For streaming UDP-based traffic, it remains to be seen
applicability of such models. In our approach, updates
are typically envisioned to be done every 15 minutes;
since our computation takes only a few seconds on a
standard pentium-based computer, the method proposed
can be implemented in a real-world environment. Fi-
nally, this paper focusses on the generalized cost-based
forecasting approach, which is a step in determining
bandwidth provisioning; detailed results on bandwidth
provisioning schemes can be found in [10].

APPENDIX I

We present the estimates of parameters along with
their t-statistics in parenthesis evaluated through the
maximum likelihood function for the data set used in
our evaluation in Table II.
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