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Generalized Cost Function Based Forecasting for
Periodically Measured Nonstationary Traffic

Balaji Krithikaivasan, Yong Zeng, Deep Medhi

Abstract— In this paper, we address the issue of forecast- a 24-hour window period and allocate the bandwidth
ing for periodically measured nonstationary traffic based accordingly. Such an option, however, while resulting
on statistical time series modeling. Often with time series jn negligible data loss, leads to excessive allocation of
based applications, minimum mean square error (MMSE) ragoyrces during the non-peak periods. Thus, there arises
based fqrecastmg Is sought th‘.'"t minimizes the square Ofa need to develop a traffic forecasting mechanism that
the positive as well as the negative deviations of the foresta : . .
from the unknown true value. However, such a forecast- Can predict the resource requwemer_]ts ahead _Of tlmg on
ing function is not directly applicable for applications a finer scale (say, for every fifteen minutes) while taking
such as predictive bandwidth provisioning in which the into account the relative importance of the under-forecast
negative deviations (under-forecast) have more impact on and the over-forecast. Such an effective forecast can
the system performance than the positive deviation (over- then be translated into bandwidth requirement and be
forecast). For instance, an under-forecast may potentiaf provisioned in a pro-active manner.
result in insufficient allocation of bandwidth leading to The first step toward facilitating traffic prediction, is to
short term data loss. To facilitate a differential trgatmert characterize the underlying traffic dynamics through an
between the under and the over-forecasts, we introduce appropriate stochastic model based on the available mea-

a generalized forecast cost function that is defined by ts. In thi text. statistical ti ies based
allowing different penalty associated with the under and surements. In this context, statistical ime series base

the over-forecasts. We invoke mild assumptions on the first Models have been proposed in the literature to model
order characteristics of such penalty functions to ensure and predict the short-term as well as long-term traffic
the existence and uniqueness of the optimal forecast valuebehavior in Internet backbone networks; for example,
in the domain of interest. The sufficient condition on the see [2], [7], [9], [10], [11], [12]. The advantage of
forecast distribution is that all the orders of the moments ysing time series models lies in its ability to adapt the
are well-defined. We provide several possible classes Ofprediction (derived from the model) based on a finite
penalty functions to illustrate the generic nature of the cat moving window of traffic trace history. Consequently
function and its applicability from a dynamic bandwidth L . ) !
from the provisioning perspective, an effective band-

provisioning perspective. A real network traffic example idth | | | hi h ffic d .
using several classes of penalty functions is presented toWidth envelope closely matching the traffic dynamics can

demonstrate the effectiveness of our approach. be obtained. The question arises then is that “what is an
effective forecasting strategy, assuming a best-fit model

is in place?”
. INTRODUCTION Conventionally, a forecasting function that achieves

One of the challenging issues that arises in a nonstd€ Minimum mean-square error (MMSE) among all the

tionary network traffic environment is to ensure that thR0Ssible forecast functions is sought in most applica-

resource requirements, in particular, bandwidth, of ti@ns. The reasons are two-fold: 1) the MMSE forecast
underlying traffic is met most of the time while avoigminimizes the square of the deviation of predicted value

ing excessive allocation of resources as well. Howevd?, 8ither directions from the unknown true value, 2) for

nonstationary network traffic do exhibit cyclic patterit 12rger class of distributions, MMSE forecast equals

at various seasonal cycles, i.e., on a daily (24-hoJF)e conditional expectation of the distribution which is

basis, a weekly basis, and so on. Consequently, a vialjli&! to compute. From the bandwidth provisioning per-

option is to assess the expected peak requirement oective, however, under-forecast (negative deviation),

which may be translated into data loss, should be treated
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date a weighted approach toward the forecast devsch measurements yield a equally spaced time series
tions. Precisely, we can potentially associate differemt, 2o, ..., 2:_1 where the subscripts represent the time
penalty functions with the under and the over-forecastalices. Assume, the best-fit model is identified for the
in the forecast cost function which is then minimizetime series through time series modeling methodologies.
to obtain the desirable optimal forecast subjected to thet 7;_; be thec-algebra generated by, zo, ..., 2 1
corresponding penalties. Under the general setup of @nmd F,_,(-) represent the one-step ahead conditional
forecast cost function framework, we show that MMSHistribution, given 7;_; with the conditional density
forecast can always be obtained as a special but |&ssction f;_1(-). It may be noted thaF;_;(-) is known
desirable case (see Section IlI-A.2). from the best-fit time series model and the observations
Our major contribution in this work is that we in-up to timet — 1. Let z; be the traffic at time¢ and given
troduce a generalized penalty function approach th&t i, z; follows F;_;(-). Let E;_;[z] be the conditional
accounts for both under and over-forecasts differentxpectation with respect tg given 7;_, and z; be the
and enumerate the sufficient conditions on these pendhyecast at timet. Further, letU(2;, z;) and L(Z;, z;)
functions such that the existence and the uniquenesgefer to the generic penalty functions for over and under-
forecast value that minimizes the forecast cost functiolorecasts, respectively. Then, we define the total cost of
is guaranteed. For the derivation of this important resuttbtaining forecast; as follows:
we assume that the knowledge of conditional forecast
distribution is available from the identification of a time Ct(Z) = Ei—1[ U(Z, 1) Iz <z
series model. In order for our result to hold, the forecast + L(Z, 2t) Iz>zy 1, ()
distribution must belong to the class of distributions
for which all the moments are well-defined (less thafl
00). In general, as long as a distribution has a moment Loty = {1 if a>b
a> -

here the indicator function is defined as

generating function, then all moments exist; this is a 0 otherwise

fairly common assumption that includes distributions . .
such as normal, exponential, or log-normal distributions. SUCh @ cost function (1) can be used for forecasting
for time-series based on models such as AutoRegres-

We illustrate the generality of our result by con-- -
sidering several classes of penalty functions that ai® ntegrated Moving Average (ARIMA) [5] and Au-

applicable in a real network. In particular, using a rengegressive Conditional Heteroskedasticity (ARCH)-

network data collected on the Internet link connectingP® Models [6], [8] with i.i.d normal innovations. This
the University of Missouri—-Kansas City to MOREnet2SPect will be deSCUSSEd Aat(:_r in Section 'V'Ar‘{
we present quantitative results for the first and the ~OF @ given forecast;, the first term in (1) character-
second order polynomial functions and piecewise line4F> thﬁ penalty duehto over—;‘orecast while thef second
function. Our intent behind using the real network data [ characterizes the penalty due to under-forecast.
to show the effectiveness of generic cost function basggrthermore, (1) car|1 b(.e written based on the linearity
forecast against the conventional MMSE forecast in @ EXPectation as below:
real rr:et_work. Fufrthe_rmore, the quant_itati\lle :je_sugs pr_ing Ci(z) = Bea[ Uz, 2) Tpsyczy |
out the impact of various parameters involved in deriving 3

. . +Ei 1| L(Z, 2) Igy >z
the desirable optimal forecast. ! 1l LG 24) Ty |

. . Zt
The rest of the. paper is organized as _foIIows.' We :/ Uz, 2) fio1(z) dze
present the generic forecast cost function in Section Il 0
and prove the emstgnce of a unique minimizer of such +/ Lz 20) foo1(z) da. @)
a function under mild assumptions. In Section Ill, we 3,

present various penalty functions that obey the assunisy notational convenience, we set

tions from Section Il to demonstrate the generality of our b

result. In Section IV, we present a real network traffic Ju(a,b; Z) :/ Uz, ) fio1(zt) dz
example to illustrate the applicability of our result tolrea a

networks. Finally, we present a summary of the work.

b
Jr(a,b; Z;) :/ L(Zt, zt) fr—1(2e) dz
II. GENERALIZED FORECASTCOSTFUNCTION a

Suppose, the traffic on a network link is measured b OU (%, %)

periodically (say, every fifteen minutes). A total of 1 Iy(a,b; 2) = /a 9z, Jim1(z) dz



and is Riemann integrable as well. Thudy (0, 2; %) is
b OL(Z, 21) Riemann integrablei.e., it is well-defined.
I(a,b; %) = / —az fe1(a) da Remark 4SincelU (%, z) is bounded and non-increasing

“ ! continuous forz, € [0, %) it follows that the partial
derivative of U(Z;, z;), if it exists, is bounded almost

Ci(2) = Ju (0,5 %) + Ji (5, 00; ). (3) everywhere forz; € [0,%). Then, following condition

_ _ o _ (ii) of Assumption 1,;(0, 2; Z;) is Riemann integrable
We are interested in determining such that; achieves Assumption 2:
the minimum cost among all positivg’s, i.e.,Ci(z]) <
Ci(z) for 2 € [0,00]. It may be noted that since decreasing continuous function of for z, €
the mea_sureme_nts (of traffic _trfa_ce) are always p(_)smve, 5, 00], and L(m,m) = 0 for m € [0,00] (see
we restrict the interval of definition for the conditional Remark 6).

distribution £ (-) of forecast t0[0, oc]. _ (i) The partial derivative ofL(Z;, z;) with respect to
Below, we enumerate a set of assumptions on the - qyists almost everywhere and it is negative and

penalty functionsU (%, 2;) and L(%, ) in order to has at most a countable number of discontinuities

ensure that a unique minimizef exists for the forecast for z in the interval(z, oo] for % € [0, 00], ie.

cost function given in (2). if P, is the set containing points of discontinuity
Assumption 1:

Thus, (2) can be rewritten as

(i) For a given nonnegative;, L(Z,z) iS a non-

then,
(i) For a given nonnegative;, U(Z;,z) is a non- OL(z, =)
increasing continuous function of; for z; € Tf < 0 for z; € (%, 00]\PL.
[0,%], and U(m,m) = 0 for m € [0,00] (see =t
Remark 2). (i) For c1,cq € [0, 00] with ¢; < ¢,
(i) The partial derivative ofU(z, z;) with respect to OL(%,b) OL(%,b)
z; exists almost everywhere and it is positive and 05 lh—a < A P

has at most a countable number of discontinuities wherec, < b < oo and the partial derivative exists

for z; in the interval[0, Z;] for Z € [0,00], i.e., _ _  OL(Z,b) .
if Py is the set containing points of discontinuity at z; = b in the chosen interval, '-ew IS
then, non-decreasing ia;.
U (%, 2) . (iv) For a given nonnegative;, Ji.(Z, 00; %) is Rie-
o5~ 0 for z € [0, &)\ Pu. mann integrable, i.e., it is well-defined (see Re-
) mark 7).
(iif) For c1, ¢z € [0, 00] with 1 < ¢, (v) For a given nonnegative;, I1,(5,00;%) is Rie-
OU (Z,a) - OU (%, a) mann integrable (see Remark 8).
0% Zi=e1 0% fi=cy Remark 5:In simple terms, the above means that

where0 < a < ¢; and the partial derivative existsL(Zt; z¢) (i) is nonincreasing and continuous, (2) has
oU(%,a) . the partial derivative that exists almost everywhere, is

atz = a in the chosen interval, "eT IS negative and is at most countable discontinuities, and
non-decreasing it;. (iii) is convex. The other two conditions, (iv) and (v),
Remark 1:In simple terms, the above means thaire technical integrability assumptions.
U(z, z¢), (i) is nonincreasing and continuous, (2) has thieemark 6:Condition (i) of Assumption 2 implies that
partial derivative that exists almost everywhere, positithe farther the over-realizatiosy to the given forecast
and is at most countable discontinuities, and (iii) i$, the higher the penalty due to under-forecast and the
convex. penalty iszeroif realization of z; equals the forecast
Remark 2:Condition (i) of Assumption 1 implies that(an ideal case).
the closer the under-realization to the given forecast Remark 7:Condition (i) of Assumption 2 does not imply
Zt, the lesser the penalty due to over-forecast and ttat L(Z;, z;) is bounded from above fot, € (Z;, 0o].
penalty iszeroif realization ofz; equals the forecask Thus, condition (iv) is necessary f@;(Z;) to be well-
(an ideal case). defined.
Remark 3:Condition (i) of Assumption 1 further implies Remark 8:Since the partial derivative of(z;, z;) may
that U(Z;, z;) is bounded from above fot, € [0,Z;) not be bounded from above faf € (2, o], condition
which impliesU(z, z;) is Riemann integrableFurther- (v) is necessary for the derivative 6f(Z;) with respect
more, f;_1(z;) being a probability density function,to z; to exist.



It may be noted that the seBs; andP;, may be empty. and from condition (iii) of Assumption 2, we have
In other words,U (%, z:) and L(Z, z:) may be defined
: oY L : I ico) — Ip(co,00;5¢1) > 0. 8
in such a way that their partial derivatives with respect plez,00ic2) = I1(ez, 00 1) ®
to % is continuous forz in the respective intervals. ~ Then, we also infer from condition (i) of Assumption 1
Lemma 1:Let U(%,2) and L(Z, z) be defined in that
such_a Way_thgt both Assumptipns 1 and 2 ho'Id, then In(cr, casc0) > 0
the first derivative of cost functiod;(z;) is a strictly o _
increasing continuous function of, in the interval @nd from condition (i) of Assumption 2 that

[O’OO]' IL(Cl,CQ;Cl) <0
Proof: From (2), using Leibniz rule, we have _ )
implying
dCi(2) iz sy s - .
dz, - { (Zt7 Zt) - (Zt7 Zt)}ft—l(zt) IU(Cl, C2; CQ) — IL(Cl, C2; 01) > 0. (9)
2 U (%, %) Following (7), (8) and (9), we hav® > 0. Since,c;
T . 9z, fe1(zt) da andc, are chosen arbitrarily, the lemma holds truam
% OL(%, ) Theorem 1:Under the Assumptions 1 and 2, there
+/ 7; fi-1(z1) dzi. (4) exists a unique; such thatz, = z; minimizes the cost

_ T _ ~ function C(z;) among allz; € [0, oc].
Following condition (i) of Assumptions 1 and 2, the first  proof: Since the first derivative of the cost function

term in (4) vanishes. Then, (4) is simplified as C(%) is a strictly increasing continuous function in the
dcy(%) o . 3 interval [0,00] (from Lemma 1), it should attain its
4 Iy (0, 25 ) + 1%, 005 2). (5) minimum atZ, = 0 and its maximum ag, = oo in

_ . _the interval|0, oc]. Below, we investigate these boundary
Following Remark 3 and condition (v) of Assumption, - ,es in order to prove the desired result.

2, both IU(O,Igt;?jt) and IL(,??t,OO;gt) are Riemann in- Recall from (5) that
tegrable. Therefore, it is clearly evident that the first

derivative ofC(z;) is a continuous function of;. dc(ft) = Iy(0, Z; %) + I3, 003 %).
Let c1,co € [0,00] with ¢; < 2 and define dz
ac,(2) 0c,(5) Then, we have
p = etz otz . dc(s
dz; z=c. dz; z=c, d(;t) 0 Iy(0,0;0) + I,(0,00;0).  (10)
. t 2=
Then, it follows from (5) that The first term in (10) vanishes, while the second term
D = Iy(0, e2; ¢2) + I1(c2, 005 ¢2) — Iy (0, c15¢1) I11,(0,00;0) < 0 (11)
—I1(e1,005c1) following condition (ii) of Assumption 2 implying that
= Iy (0, c15¢2) + Iy (e, e c2) + I (e, 005 ¢2) the minimumvalue of the first derivative of cost function
_[U(O, c1; Cl) — IL(Cl, C2; Cl) — IL(CQ, 00; Cl) is n(_ag(_';ltive
= {Iy(0,c15¢2) — Iy (0,15 ¢1)} dCS|~m|IarIy,
+{Iv(c1,c25¢2) — I(c1, co5c1)} <~Zt) = lim Iy(0, 2 2) + lm 17 (2, 005 Zt).
dZt Zy=00 21 —00 Z4—00
+{IL(c2,00;¢c2) — I (c2,005¢1)} . (6) (12)

It may be noted that bottiy (a,b;m) and Ir(a,b;m) The second term in (12) vanishes, whereas the first term
wherez;, = m for somem > 0 are evaluated as follows:

. 3 ( ) ~hHl IU(O, Zt; Z~t) >0 (13)
U(zt, 2t oo
Iy (a, b;m) :/a 9z, |lz=m fr-1(z) dz as a result of condition (ii) of Assumption 1 implying

thereby that thenaximumvalue of the first derivative of
cost function ispositive
Then, from Weierstrass intermediate value theo-
Zi=m fia(z) dz. rem [13], there exists at least ong¢ € (0,00) such
that the derivative vanishes. However, from Lemma 1, it
follows that z; should be unique thereby, guaranteeing
Iy (0,c15¢2) — Iy (0,c15¢1) >0 (7) a unique minimizer for the cost functia®y(z;). [ |

and

b ~
IL(a,b;m):/ aLE;th)

a

From condition (iii) of Assumption 1, we have



[Il. PENALTY FUNCTION - EXAMPLES forecast distribution. Since, all the moments of

In this section, we exemplify the generality of class the forecast distribution are assumed to be well-
of penalty functions from section Il. In particular, we defined andh is finite, condition (iv) of Assump-
consider penalty functions in the form of polynomial ~ tion 2 is satisfied. Furthermordy (z:, oo; %) can
functions and piecewise linear functions. For these exam- @lso be expressed in terms of the first— 1
ples, we also show that all the assumptions stated above Mmoments of the forecast distribution following

are satisfied. (a). Thus, condition (v) of Assumption 2 is also
satisfied.
A. Polynomial functions Thus, if the penalty function& (Z;, z;) and L(Z;, z;) are

polynomial functions of the form given above, following
Lemma 1 and Theorem 1, it can be established that the
Uz, 2) = k1(Z — z)"™ forecast cost function given in (2) has a unique minimum
z;. Observe that when > 1 for any real number, parts
of (a), (b) and (c) in the beginning of this section remain
where constants, s > 0 andn is a positive integer true. Thus, Theorem 1 implies the existence of the unique
(n > 1). Note that these functions form a naturahinimizer. Whem: € (0, 1), for examplen = 1/2, then
generalization of conventional MMSE forecast functionthe Assumptions 1(iii) and 2(iii) fail and Theorem 1 does
for example, if we setr = 2 andx; = k2 = 1, then it not apply.
reduces to the MMSE forecast function. Parametars Below, we br|ef|y illustrate how to Conqputgk for the
andr: allow a user to assign different weights to undefyst order and the second order polynomiats={ 1 and
and over forecast. n = 2) based on the results from [11]. The derivations
Clearly, the above polynomial function satisfies comyf these results are also presented in detail in [11].

dition (i) of Assumption 1 and also condition (i) of 1) Computation of:} for casen = 1: Forn = 1,
Assumption 2. Below, we show that the rest of conditionger replacing the factors; and x» using a ratior,
are satisfied as well.

Consider the following:

L(ft, Zt) = 52(2’15 - ZNt)nv

ie.,r = BLowith » < 1 (i.e., more penalty for under-

K
(@) forecastinQQ), we obtain the penalty functions as follows:
U (2, z1) _ _ n—1
o5 k1 n (5 —2)" 7, Uz, 2) = (5 — )
which is greater than zero for, € [0,%;) and L(z, 2t) = (2t — 2).
equals to zero ifz; = Z. It is evident thatPy o _ _
is a null set (no discontinuities). Similarly, Upon substituting these penalty functions in (1) and
OL(% minimizing the resulting cost function, we obtain the
E;;;Zt) = ko n (2 — 7)Y following result:
which is less than zero for; € (2, 0o0] and F1(%) — ! =0, (14)
equals to zero ifz; = Z;. Again, Py, is also a 14w
null set (no discontinuities). Thus, condition (ilwhere F;_,(%) = Plz < % |Fi_1]. The required
of Assumptions 1 and 2 are satisfied. optimal forecast; is the value ofZ; that satisfies (14).
(b) Forei e € [0,00] with ¢ < ¢ andn > 1, we  |n other words; is the ()" quantile of F;_;. When
have r = 1, zf is the median ofF;_;. In fact, forr > 1,
oU (%, a oU (%, a we still havez; satisfying equation of the form (14) by
t
0% li—e < 0% lz—e’ replacingr with 7 = 1 in (14).
where0 < a < ¢;. Similarly, we have Since, Ft,%(z}) is_ a stri.ctly increasing function of
~ ~ z; for any given distribution, (14) can be solved nu-
aL(zj’b) M , merically using a binary search algorithm. For< 1
9z lz=c, 0z lz=c, (the desirable range), the lower and upper limits for

wherecy < b < oo. Forn = 1, we have an equality the search algorithm can be taken as the value;of
relationship in both the cases. Thus, condition (iigorresponding to the median and the maximum capacity
of Assumptions 1 and 2 are satisfied. of the provisioning system respectively. The convergence
(c) For the givenL(z;, z;), Jr(%,00; Z;) can be ex- rate of the search algorithm depends on the conditional
pressed in terms of the first moments of the distribution obtained from the fitted time series model.



2) Computation of; for casen = 2: Similar to the ~ 3) Remarks on non-integral values af A more
casen = 1, we obtain the penalty functions far = 2 general case could be consideringp be rational. In par-

as follows: ticular, n can be chosen from the subgét 1, 2,2, ....}
of set of rational numbers. It can be shown that i 1

U(z, 2t) = 12 — 21)° (i.e., square root function), not all of the conditions will

L(%,2) = (2 — %)% be satisfied and heneg is not well defined in that case.

However, these conditions are satisfied for polynomial
Upon substitution in (1) followed by minimization, wefunctions forn > 1 in that subset. In fact, for all rational
obtain the optimal forecast to be the value of; that n > 1, it can be shown that a unique minimizgrexists.
satisfies Furthermore, the result can be generalized to any real
n > 1.
2t — G(gt) =0, (15)
B. Piecewise Linear Functions

We now consider penalty functions in the form of
G(z) = Eiafa] — (1 —7) Qia(2) (16) Piecewise linear functions. These functions form a spe-
1—(1—7) F1(%) cial case of first order polynomial functions. Essentially,
these functions enable us to impose penalty in a non-
uniform manner depending upon the interval on the

(a fixed-point equation) where

with 0 < r <1 and

~ Zt number axis in which the magnitude of the deviation
Qi-1(2) :/0 2 fi-1(z) dzp. error falls into. For example, in a real network, it may
_ be desirable to consider a smaller penalty factor for
Forr > 1, we obtain the deviation error up to 20% of unknowsn while, a
i F Bz 4 (1—F (5 relatively greater penalty factor ?f deviation error exdse
G(z) = — tlze] +( ) Qra(Z) (17) 20%. In fact, such a notion might be further extended

P =7 Fia(®) considering more intervals. Here, we consider represen-
The uniqueness of; shown above for any integraltations forU(z;, z;) and L(Z, z;) with n sub-intervals,
values ofn guarantee the uniqueness of the fixed-poing., the intervalg0, z;] and [Z;, co] are divided inton
satisfying (15). Note here that for(7) = 1, (17) sub-intervalsin which the penalty functiot§z;, z;) and
becomes(z;) = FE;_1[z] and the optimal forecast® L(Z;, ;) assume different linear forms, respectively.

is the conditional mean of the distributian_;(-) iden- Fig. 1 shows an example df(Z;,z;) with 4 sub-
tified from the time series model. Thus, the conditiondttervals while Fig. 2, shows an example bz, z)
meanFE;_1[z/] can be taken as the initial value &f for with 4 sub-intervals.

the fixed-point iteration algorithm for any given< 1 or Now, we present the general representation as follows:
7 < 1. The following steps briefly illustrates the fixed-

( od ~ ~
o . hiZs —mize a0z <z <a1?
point iteration. 1<t 1%t 0%t > 2t = A1%¢

(i) Assume the initial value of; = E;_1[z]. Uz, 2) = ézzt mF  G1% S 2 S d2% (18)
(i) ComputeG(z;) using (16). :
(iii) If the current value ofz; equalsG(z;) obtained bnZt — Mn2zt  an-12t < 2t < anss

from step (ii), stop the iteration and; = Z.
Otherwise, proceed to the next step.

(iv) Assign z; = G(%) and go to step (ii). myzy —b1Z  apZ < zp < a7z
Since (15) has a unique fixed-point, the convergence of | _ moz —bhZ a5 <z < ayg 19
the iterative algorithm is guaranteed. Furthermore, it may (Z1,2) =9, (19)
be noted that the conditional mean of the distribution is '
also the MMSE forecast for any linear time series sys-
tem. Thus, it is evident that we obtain MMSE forecast ashereap = 0 < a; < a3 < ... < a, = 1 andaj =
a special case of second order polynomial cost function< o} < a), < ... < al, < co. In order to ensure
with equal costs for both under and over-forecasts. mero penalty when; equalsz; (following condition (i)
other words, MMSE forecast matches with a particulaf Assumptions 1 and 2), we considgf = m, and
instance of cost function less useful in reality. For furthé) = m/. Choosen; > my > ... > m,_1 > m,, (to be
details, see [11]. consistent with the notion of imposing higher penalty for

and

/ !/ / g !z
mpze — bz a2 < 2 < apz,
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Fig. 1. Utilization Penalty Function - An Example Fig. 2. Loss Penalty Function - An Example

higher deviation) and then, the continuity ©f z;, z;) is
ensured by computing,’s as follows:

k=1,2,...,n—1.

where0 < p < ¢y andes < ¢ < co.

For a givenL(Z, z:), Jr(%,00;%) can be ex-
pressed in terms of the first moment of the forecast
distribution. Thus, condition (iv) of Assumption 2

(©)

b = bp+1 + ap(my — my41)

(20)

Similarly, choosen) < m, < mj < ... < m,, and then,
the continuity ofL(Z;, z;) is guaranteed by choosibg’s
as follows:

is satisfied. Since the partial derivativesidaf;, z;)
evaluates to a constant value in each of theub-
intervals, it follows that condition (v) of Assump-
tion 2 is also satisfied.

o1 =W+ ap(mp —my) k=1,2,...,n—1 Thus, the piecewise linear functions of the form given
1) above with at most countable number of regions (inter-

_ N o vals), satisfy all the imposed conditions. It then follows
tions 1 and 2 is satisfied here. Below, we investigate gl

the other conditions:

(@)

For the piecewise linear functions given above, the
cost function is given as follows:
b1 0< z <aiz

n
OU(z) _ )02 mz <z <axz

0z ): C(Zt)zz{/aalit

i=1 i—1%¢

(bize — mize) fe—1(21) dZt}

n

+Z {/ J (mjze — Vi) fio1(21) dzt}-
j=1 a5z

j—17t

b apn—12z < 2t < anZ,
which is clearly positive sincéby };_, > 0. How-
ever, at pointsi.z;, k = 1,2,...,n—1, the partial
derivative does not existn(— 1 discontinuities).

(22)

Similarly, whereag = 0,a, = a = 1,al, = co. Upon differen-
—V, £ <z <dz tiatin_g (22) wit_h respect ta; and equating to zero, we
OL(Z, %) B, dbE <z < dbd obtain (after simplification):
S
=b, an_1& <z < ayi, > (b = bi1)Fr1(aiz) + (bn + 1) Fy1(%)
1=1

which is negative sincéb; };'_, > 0. We also have

n—1
n — 1 points of discontinuity here. I L VYF A (d 5 = b (23
(b) Forey,cy € [0,00] with ¢; < ¢, it readily follows ;( e~ b Fioa(aj2) = b, (23)

from (a) that

oU (2, p) < oU (2, p) Below, we briefly illustrate the computational aspects of
0% lz=e, = 0zt li=c step functions (used as penalty functions) for the cases

0L(%,q) < 0L(%,q) n =1 andn = 2, i.e., functions with one and two sub-
0% lzi=e, = 0% lzi=c intervals.




1) Computation ofz; for n = 1: It can be observed to UMKC averaged over every 5-minute interval (gran-
that forn = 1, (23) can be simplified as follows: ularity). We have grouped the measurements into three
b data sets referred to as data set |, data set Il and data

! (24) set lll. Each data set spans measurements over 24-hours
for 15 days excluding weekends and any holidays as
In particular, if by = m; = k1 and b} = m) = our interest is to model for the weekday behavior. The
ko, then (24) becomes equivalent to (14). Thus, theeasurements are collected in the months of September,
computation of optimal forecast is similar to that of November and December of year 2003. For further
first order polynomial case described in Section llI-A.details on data sets, see [10], [11]. The first ten days’

2) Computation ofz; for n = 2: When we have data from the data sets were used in determining the
step functions with two sub-intervals & 2) as penalty parameters’ estimates and then, tested on our model over
functions, simplifying (23) yields the following linearthe next five days.

Fi_1(%)

R

relation: First, we have averaged three successive sample points
W - (of 5 minutes each) of the collected measurements to

bl/ fi—1(2)dz + ba foo1(z)dz obtain the data rate over every 15-minute interval. Our

0 a1 %, intent behind this aggregation is under the assumption

, [aF , [ that a service provider may not want to do bandwidth
- bl/~ fim1(ze)dz — by /  fi1(z)dz = 0. updates (based on forecasts) more frequently then every
- “x (25) fifteen minutes; this also gives us one-step prediction to
look out for the next fifteen minutes. Note that this is
Without loss of generality, considéh = my = r and done for the purpose of our study and the time series
by = m} = 1.0. Using the relations from (20) and (21)model presented is quite general. Over ten days, we
the linear relation (25) can be shown to be equivalent fus consider 960 samples for model identification in
~ ~ each data set with 96 samples per day. In general, we
ar(mi = r)F-(a12) + (1 +7r)Fr-1(2) denote the sample size per day usifigfor this study,
ay(my —1)F_1(a) %) =14 aj(my —1). (26) T happens to be 96. Fig. 3 shows a less-detailed view

of 15-minute aggregate data rate observed in data set |

Since F'(-) is a st_rictly increasing function, (26) can b‘i"/vhile Fig. 4 shows a detailed view of the day 1 traffic
solved for the optimal;’ using a binary search algor'thmdata rate from data set I. A similar coarse-level behavior

similar to that ofn = 1 case. The lower and upper I|m|tsIS observed in the other two data sets as well.

for the search algorithm can be appropriately chosen.l.he first obvious observation from Fig. 3 is the

based on the known constants, all’m.l andm;. The evidence of the time-of-the-day effect. In a wider sense,

convergence ratg OT thg search algorithm depends URRE data rate behavior over any given weekday is similar

the conditional distribution of the forecast model. to that of any other weekday in the sample. However, we

have observed a few noticeable peaks on certain days in

IV. A REAL NETWORK TRAFFIC EXAMPLE the data sets. For example, relatively higher peaks can

In this section, we first present a summary of th@e observed on day 1, day 6 and day 8 than the rest

time series model obtained for a real network exampl#: Fig 3. These peaks result in outliers (data points that

a detailed discussion can be found in [10]. We thed€ extreme relative to the rest of the sample) that can
demonstrate the quantitative results for the first and tistort the innovation distribution as well as the stati

second order polynomial penalty functions, followed b§stimates of the parameters of the resulting model.

results for a piecewise linear penalty function with twhlevertheless, these outliers are genuine and essential in
sub-intervals. characterizing the traffic dynamics since they might arise

due to the inherent variability of the underlying traffic.
Thus, we do not eliminate them in our analysis; rather,
we transform the aggregated time series using the natural
The measurements are collected on the Internet lildgarithmic transformation. Such a transformation is
connecting the University of Missouri-Kansas Citghown to be quite effective in stabilizing the data points
(UMKC) to MOREnNet (a Internet Service Provider)free of outliers). Following this transformation, based
using a Multi Router Traffic Grapher (MRTG) trafficon the auto-correlation function, we identified the need
monitoring system; these measurements represent fiie first differencing as well as seasonal differencing
nonstationary data rate of the traffic from outside worlhased on duratiorl’) in order to obtain a stationary

A. Data sets and Time series modeling
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Fig. 3. Data set I: Less detailed view Fig. 4. Data set I: Detailed view of Day-1 (D1)

series of first order. In the resulting stationary series;. The proposed model for serieg is chosen from
we observed the presence of the clustering of largarious candidate models based on the smallest Bayesian
values and small values. Such a clustering effect arideformation Criterion (BIC) [5] (a commonly adopted
primarily from the strong dependence of the innovatioconservative model selection criterion). For this model
variance at any given sample point over the innovatiodentification and estimation procedure, we used SAS,
variance of past sample points, i.e., innovation varianeewell-known software package [14]. The parameters of
is correlated. In order to model this dependency, vibe model are estimated based on the sample maximum
include a conditionally heteroskedastic component &kelihood function conditioned on the firdt07T" obser-
a part of the model. Thus, the time series model sations; see [5], [8] for more details on the statistical
obtained for the transformed series is a seasonal ARCHference of the time series models. We present the
type model where we restrict the process model festimates of all the parameters along with theiralues
innovation (disturbances) to Gaussian distribution.  in Appendix | for data set I. For the other data sets,
Let z; represent the observed time series and the estimates of these parameters are indeed different;
represent the log transformed series i®;, = Inz;. however, the order of the model remains the same
Then, the stationary serieg of first order obtained as (28). It may be noted that the estimate «f is
after the differencing operation at two levels is givehighly statistically significanfrom zero (i.e., at the 99%
as follows: significant level to reject the null hypothesis that it is
zero). Such a high statistical significance for the estimate
of o is observed in other two data sets as well. Thus,
Following the discussion above, the proposed seasoti® ARCH-effect is justified.
ARCH model for the transformed serieg is given It is evident from (28a) that the distribution of one-step
below: ahead forecast of; is normally distributed with mean
4 2 E;_1]y:] and varianceh;. The reason that we restrict
ye=Y @i+ bjmjr+e  (28a) ourselves to one-step ahead forecasts is to make use of
i=1 j=1 the new observationz() as soon as it is available. Using
£ = nt\/h: (28b) relation (27) andw; = In z;, we can express (28a) in
terms ofz; as follows:

Yt = (wt - wtfl) - (wt—T - wt—T—l)- (27)

hi = ag + aier_;. (28c)

T+5 2741
The unknown parameters of the model (28) dre;} 4,

5
(autoregressive coefficients)g;}2_, (seasonal autore- Inz = ;XZ Inze—i + ;XJ 2y + k;T XoIn 2o
grgssive coefficients)y §ARCH intercep;[j) andxé (first . _— !
order ARCH co-efficient). Herey is an independent an
identically distributed normal random variable with zero + Z Xolnze—s +et, (29)
mean and unit variance. However, it should be noted
that ¢, are merely uncorrelated and not independewhere y's are computed from the linear and the sea-
(higher moments may be correlated), i.Blg;e;—1] =0 sonal autoregressive coefficients,and ¢, respectively,
and E[s?e? ;] # 0. It follows then, the conditional from (28a). The one-step ahead minimum mean square
distribution of ¢; given the information up to and in-error (MMSE) forecast; of z; (the desired quantity) at
cluding timet — 1. is normal with mean 0 and varianceime ¢ — 1 is given by E; 1 [¢"*], which can be obtained

s=3T



10

from (29) as shown below. Let Note that the schemé refers to one among the first

5 T+5 2T +1 order polynomial case, the second order polynomial case
Cp_q = in Inz_; + Z XjInzj + Z viInz_, and the piecewise linear function case.
im1 J=T b—2T For space considerations, we present our results pri-
3T+1 marily for data set |. Nevertheless, we present plots
+ Z XsIn 2i_s. (30) in several figures, which also include results for data
s=3T sets Il and Il for comparison. We first present the
It may be noted thaC;_, is completely known at time cumulative under and over-forecast and the number of
t. Thus, forecast misses associated with the MMSE forecast in
In o . Table I. These values help us to comprehend the results
Epqle™™] = et E’f—l[e ] on the three metrics in a better manner.
= et (31) TABLE |
Since, the conditional distribution ef follows a normal MMSE FORECAST DETAILS FORDATA SET |

distribution, we have*: to follow a “lognormal” distrib-

. . . . of uf
ution. Then, it follows from (31) that given the informa- CENimse CENmse NEMvnvse
tion up to and including time — 1, z; is conditionally 10065445.29432951 | 7921418.801668145 41
lognormally distributed with meam,; and variancer?
where
11y = oCro1p's (32) B. Results for first and second order polynomial func-
ion
o2 = 201 ghe(ehe — 1)), (33) tions

o For ease of discussion, henceforth, we refer to the
Note that all the moments of a lognormally distributefl;st order and the second order case as the “linear”

random variable are well-defined and hence the randgfy tne “quadratic” scheme, respectively. Most of our
variablez; has we*ll-defmed moments. Consequently, &fjscussions here will be for results based on data set
optimal forecast; can always be obtained for penalty \yhjle in some of the figures we also report results
functions satisfying Assumptions 1 and 2 listed in Segs gata sets Il and 11l for the purpose of comparison.
tion Il based on (1). The optlmallt)_/ of the fprecast I$n Fig. 5, we have shown the one-step ahead forecast
based on the nature and the relative magnitude of g e|ope for the linear and quadratic penalty functions
penalty components associated with the under and OVElsng with the MMSE forecast envelope for= 0.1.

forecasts. _ _ For clarity, the samples are shown from near the end of
In the following sections, we evaluate the forecasthgay_lo to the end of Day-11, split over three parts.

results based on polynomial penalty functions (first and Njotice from Fig. 5 that there is a distinct gap between
second order) and piecewise linear penalty functiofgs MMSE forecast envelope and the other two forecast
(with two sub-intervals) against the MMSE forecast agnyelopes. Whem = 0.1, the penalty factor associated
applied to Day-11 of data sets. Toward this end, Wgith the under-forecast is ten times that of over-forecast
consider three metrics: (i) Fractional Increase in errg,e to which, the forecast envelope associated with the
due to Over-Forecast (FIOF), (ii) Fractional Decreaggear and the quadratic scheme is much above that of
in error QUe to Forecast Misses (FDFM), and (iii) Difyne MMSE forecast envelope. As increases, the gap
ference in the number of Forecast Misses (DFM). L@fecreases and eventually for a particutavalue, the
the cumulative error observed due to the over-forecaghgified forecast envelope coincides with the MMSE
and the under-forecast for the forecasting schefi®  forecast envelope. In particular, in the case of quadratic
denoted byCEZ" andCEY/, respectively. Furthermore, forecast scheme, it can be recalled from Section Ill-
let NF'Mg be the number of forecast misses observeds that the modified forecast envelope coincides with
for the forecasting schemg. Then, the metrics areihe MMSE forecast envelope when = 1.0. On the

defined as follows: other hand, for the linear scheme, the modified forecast
— (CEY — CEY . 1op) a4 ©nvelope coincides with the MMSE forecast envelope
S = CE% (34) for somer < 1.0. In other words, forr = 1.0, the
MMSE

(CEY R ) modified forecast envelope falls below the MMSE fore-
S MMSE (35) cast envelope. This is due to the fact that the modified
CE}\‘fMSE forecast coincides with the “median” of the conditional

DFMg = NFMg — NFMyyvsk- (36) forecast distribution for = 1.0 which isalways smaller

FDFMg =
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Fig. 5. MMSE forecast curve along with linear and quadratic schemedofasecast, shown from near the end of Day-10 (D10) to the end
of Day-11 (D11); split over three parts to show finer details
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Fig. 6. Data set Ir associated with MMSE for linear schemé”(l) Fig. 8. FIOF and FDFM for quadratic scheme
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Fig. 7. FIOF and FDFM for linear scheme Fig. 9. DFM for linear scheme

DFM - Quadratic Scheme

than the mean (MMSE forecast) in the case of lognormal 5 e seeme
distribution. In fact, we computed the valuerofequired M (ot sat )~
at each time instant in order to obtain the MMSE forecast DFM (Daia settlh - ©
from the forecast cost function associated with the linear
scheme. For convenience, we denote this ratioBy.
Then,r[’“l can be computed at any instantising (37)
from (14).

rm;l _ _ 1 (37) 0.1 02 025 033 04 05 066 075 0.9 1.0
t - ’ Penalty ratio (r)

(")
where z;" is the MMSE forecast at time¢. Fig. 6 Fig. 10. DFM for quadratic scheme
iIIustrateSrf“l for all time instants from near the end
of Day-10 to the end of Day-11 for data set I. As can
be noticed,r;’f“l stays close to 0.85 (less than 1.0) wittand FDFM for variousr values. One of the major
occasional little fluctuations. observation is that we always achieve a higher FIOF and
In Figs. 7 and 8, we illustrate the results of FIOFDFM with the linear scheme than with the quadratic
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Fig. 11. MMSE forecast curve along with piecewise linear function bdsegtast, shown from near the end of Day-10 (D10) to the
end of Day-11 (D11); split over three parts to show finer details

scheme. For- closer to zero, we notice approximately\C. Results for Piecewise Linear Function = 2)

an exponential Increase in FIOF fo_r .bOth the schemeslt is evident from (26) that the parameters involved in
due to an extensive bias toward avoiding under—foreca@&mputing the optimat? are:r, ay, my, a,, m,. In our
t =l ’ ’ 1 2"

For example, when = 0.1, we observe around 8, ati0n exercises, we consider = rm), andd) =
80% and 70% decrease in error due to under-forecast ,
with an approximate 300% and 200% increase in errgr- This means that the parameters involved aret
due to over-forecast respectively, for the linear and tla@dm/,. The implication of choosing; = rm), here is
guadratic scheme. Asincreases, we witness a graduallyo reduce the slope of the linear functions associated with
decaying gain in FDFM while a gradual decrease ihe over-forecastl{(Z;, z;)) in each interval uniformly
FIOF, eventually converging to zero gain/loss from thdily a factor of 1 — » relative to the respective linear
of MMSE forecast. Note that far = 0.9 onward, FDFM functions associated with the under-forecdst, z;)).
becomes positive while FIOF becomes negative in theFig. 11 shows the one-step ahead forecast envelope
case of linear scheme implying an inferior performander two sets of values for the parameters in the order
with respect to the MMSE forecast scheme. Such (A a;,m)) along with MMSE forecast envelope. Similar
behavior is attributed to the fact that the forecast from the case of polynomial penalty functions, for clarity,
the linear scheme coincides with the MMSE forecast fatie samples are shown from near the end of Day-10 to
r in the neighborhood of 0.85 (see Fig. 6). Furthermorthe end of Day-11 split over three parts. It is evident
we present the decrease in forecast misses associétesh Fig. 11 that the forecast envelopes corresponding
with the linear and the quadratic schemes with respeot (0.1,0.7,10) and (0.1,0.9,10) are well above the
to the MMSE forecast in Figs. 9 and 10. A significanMMSE forecast envelope. In other words, values of
decrease is observed in the number of forecast missesloser to zero yields a more conservative forecast
for values ofr closer to zero, supporting the observednvelope than the MMSE forecast envelope. As we
behavior of FDFM in Figs. 7 and 8. Upon increasing increaser while keeping both:; and m/, constant, the
DFM converges toward zero. In particular, DFM reachesope of the linear functions associated withz;, z;)
zero whenr = 1.0 with the quadratic scheme while itincreases which, in turn, brings the forecast envelope
becomes positive with the linear scheme. This behavidoser to the MMSE envelope. The choices af and
is consistent with the observation made in Figs. 9 and 3@/, primarily control the value of- that brings down
this gap to a negligible level. For convenience, we use
the notation™**' to refer to the value of that yields

In summary, for the quadratic scheme, the optimHl¢ MMSE forecast at time for some givena; and
forecastz; at time ¢ is always above that of MMSE ™5 To computer;" at any instant, we 50“{9 (38)
forecastz{" at timet, as long asr lies in the open for r obtained from (26) by substituting; = — and
mterval_(O, 1). On the other hand, _for the linear schem%1 — rm, to obtain: a1
the optimal forecast; at timet will be above that of
MMSE forecast forr taking values in the open interval 1, ., z" m
(0, a) and will fall below the MMSE forecast fartaking .., a2~ V1= F <al>} = PG
values in the closed intervét, 1] for somea < 1.0. The "t = {F(z") + a1(m}y — 1)F(a12/™)} '
value ofa, however, depends on the parameters of the (38)
conditional forecast distribution, which is lognormal in
our case. wherez;" is the MMSE forecast at time
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Data set | decrease in error due to under-forecast (forecast misses)
with an approximate200% increase in error due to
Y e U Ve over-forecast. These values substantiate the observation
made in Fig. 11 regarding the significant gap between
the modified forecast envelope and the MMSE forecast
envelope. Note that on increasing gain in FDFM
decays gradually along with a gradual decrease in FIOF.
(0910 = Since the average value of "' for the case(0.7,10)
p10 Tim:ils_minutewmdowi“ bl is just above 1.0, FDFM and FIOF remain negative
and positive, respectively, even with = 1.0. For
Fig. 12. Data set Ir corresponding to MMSEr{®) completeness, the difference in forecast misses (DFM)
is presented in Fig. 14.
To summarize, if piecewise linear functions with=
2 sub-intervals are used as penalty functions, the optimal

1.2

0.5

Penalty Ratio [r,"P']

FDFM, FIOF - (r,0.7,10)

400 ‘ "FDFM (Data set I) —— ) i )
roOF Dataset) 4 | forecastz} at any instant for a givenr in the half-closed
300 FIOF gData setII; § H ¢
X FDFM (Data set l) O interval (0, 1], depends on a few parameters. In our
s FIOF (Data set Ill) -~ .1 .
. study, the parameters that control the modified forecast
g g are reduced to twoy; andmj,. However, this need not
. Fg be the case in practice. In other words, there might not
. s exist any dependencies betweenanda} andm; and
001 02 02 033 04 05 066 075 08 10 m!, as considered here. In any case, the choice of the
Penalty ratio (1 values for these four parameters influences the optimal

forecastz; at any instant.
In the case of data set Il and data set Ill, a similar
overall trend is observed for the FDFM, the FIOF and

Fig. 13. FIOF and FDFM for Piecewise Linear Cgse0.7, 10)

. prm-ory the DFM metrics with respect to increasingin the
M (s} 3 half-closed interva(0, 1] though the absolute values may
R DFM (Datasetll) - O 1) vary; this trend can be seen in Figs. 13 and 14.
30 s 12N
20 TR V. SUMMARY
i, In this paper, we sought to differentiate the impact of
. Ko T under-forecast and over-forecast on the network perfor-
5 mance by presenting a generic forecast cost function.
0.1 02 025 033 04 05 066 075 0.9 1.0 . . .. . . . .
Penalty ratio (1) This function, upon minimization, yields the desired
_ _ o forecast subjected to given penalties. Such an approach
Fig. 14. DFM for Piecewise Linear Cage, 0.7, 10) toward deriving forecast is especially more desirable in

the context of adaptive bandwidth provisioning where
the data loss (arising from under-forecast) is a more
Fig. 12 illustratesr{™* for the two cases discussedstringent criterion than the under-utilization of band-
above. The average values df" for the casega; = width (due to over-forecast). Our results hold for forecast
0.7,my = 10) and (a1 = 0.9,m; = 10) are 1.01 distributions for which moments are well defined; this is
and 0.96, respectively. As can be observed, the variatigrfairly general assumption that holds for distributions
around the average is very minimal. Furthermore, Wwgich as normal, exponential or log-normal distributions.
notice that the path of;"' over time for the caseIn some practical situations, heavy-tailed distributions
(0.7,10) resembles an approximate mirror image ahight be encountered, which do not have all the orders
the case(0.9,10). This near symmetrical behavior isof moments well-defined. In such cases, an approximate
possibly due to the inverse proportionality relationshigethod can be used, as described in [10].
betweena; andaj. We have enumerated a few mild assumptions on the
In Fig. 13, we illustrate the results of FIOF and FDFMirst-order characteristics of penalty functions, respec-
for variousr values where the zero axis is associateaively for data loss and under-utilization, that guarantee
with the MMSE forecast. For instance, when= 0.1, the existence of a unique forecast under the generic cost
i.e., for the cas€0.1,0.7,10), we observe aroun@0% function framework.
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TABLE I

We considered various classes of functions that can
DATA SET | - PARAMETER ESTIMATES

be candidate penalty functions in a real network. In

particular, when penalty functions belong to polynomial o1 | -0.147359828] 4, | -0.586686018
classes of functions, they yield equations that are com- (-4.35) (-19.12)
putationally easy to solve. In fact, we have presented the @o | -0.10856727 | ¢ | -0.2604787
forecast equations (to be solved to obtain the desirable (-3.95) (-8.36)
forecast) for the first and the second order polynomial o3 | -0.099462816| oo | 0.0332740145
functions. We have shown that the MMSE forecast can (-3.25) (17.99)

be obtained as a special case of second order polynomial @a | -0.137403164| o1 | 0.196148845
function. (-4.11) (3.82)

To assess the effectiveness of our approach, we pre-
sented quantitative results for the polynomial class of
functions and piece-wise linear functions as applied t&] T. Anjali, C. Bruni, D. lacoviello, G. Koch, C. Scoglio, “Filter-
real world traffic measurements. One of the inferences "9 and Forecasting Problems for Aggregate Traffic in Internet

. . ’ Links,” Performance Evaluatigrvol. 58, no. 1, pp. 25-42, 2004.

from the_se exercises |s.that MMSE forecast can alwa_y[g] A. K. Bera, M. L. Higgins, “ARCH Models: Properties, Esti-
be obtained as a special case from the corresponding mation and Testing,Journal of Economic Surveysol. 7, no.
forecast cost function. Such special cases however, turns 4. Pp. 305-362, 1993.

: : . .’ . [4] T. Bollerslev, R. F. Engle, D. B. Nel “ARCH Models,”
out be less desirable from the bandwidth prowsmmnéj] Hangbﬁgskegf’ Economggi;ol 4, pp ggsgf_‘sossclggfde S

perspective. Thus, our approach toward prediction can j§ G. E. p. Box, G. Jenkins, G. C. Reins@ime Series Analysis:
more general with respect to provisioning of bandwidth  Forecasting and ControlThird Edition, Prentice Hall, 1994.
in a real network. The forecasting models proposed hatél R:F-Engle, “Autoregressive Conditional Heteroskedasticity with

b di L . Estimates of the Variance of United Kingdom InflatioR£ono-
can be automated in a monltqung envwo_nme_nt. _ metrica vol. 50, no. 4, pp. 987-1007, July 1982.

It may be noted that there is no one-size-fits-all timg7] N. K. Groschwitz, G. C. Polyzos, “A Time Series Model
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APPENDIX |

We present the estimates of parameters along with
their t-statistics in parenthesis evaluated through the
maximum likelihood function for the data set used in
our evaluation in Table II.
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