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A PARTIALLY OBSERVED MODEL FOR MICROMOVEMENT
OF ASSET PRICES WITH BAYES ESTIMATION VIA FILTERING

YONG ZENG

Department of Mathematics and Statistics, University of Missouri at Kansas City

A general micromovement model that describes transactional price behavior is pro-
posed. The model ties the sample characteristics of micromovement and macromove-
ment in a consistent manner. An important feature of the model is that it can be
transformed to a filtering problem with counting process observations. Consequently,
the complete information of price and trading time is captured and then utilized in
Bayes estimation via filtering for the parameters. The filtering equations are derived. A
theorem on the convergence of conditional expectation of the model is proved. A con-
sistent recursive algorithm is constructed via the Markov chain approximation method
to compute the approximate posterior and then the Bayes estimates. A simplified model
and its recursive algorithm are presented in detail. Simulations show that the computed
Bayes estimates converge to their true values. The algorithm is applied to one month
of intraday transaction prices for Microsoft and the Bayes estimates are obtained.

KEY WORDS: high-frequency data, filtering, Bayes estimation, counting process, conditional distri-
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1. INTRODUCTION

A large body of literature in financial economics and statistics is devoted to the modeling
of asset price behavior. Existing models can be classified into two broad categories: macro-
and micromovement models. Macromovement refers to daily, weekly, and monthly clos-
ing price behavior and micromovement refers to transactional (trade-by-trade) price
behavior. In early studies, daily, weekly, and monthly asset closing prices were explored
and popular models, such as geometric Brownian motion (GBM), diffusion, and jump
diffusion models, were developed. In the late 1980s, transaction, or intraday, data became
available and micromovement models emerged. To model the micromovement, one needs
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to understand both the strong connection between the macro- and micromovements and
their striking distinctions. As for the connection, because the macromovement is an
equally spaced time series drawn from the micromovement data, the overall shape of the
two are the same. This suggests that the models for the macro- and the micromovements
should be closely related.

According to market microstructure theory, financial noise emanates from two sources.
First, noise is the result of “noise trading” (Bagehot 1971; Black 1986) induced, for
example, by transitory liquidity needs of traders and investors, and by other traders’
mistreating “fully discounted information” as information. Second, noise reflects the
impact of the trading mechanism by which prices are set in the market. This includes, for
example, price discreteness,1 price clustering,2 the random arrival of buy or sell orders
to the market (Mendelson 1982), the transitory state of the market maker’s inventory
positions (Amihud and Mendelson 1987; Hasbrouck 1988), the transient component
of the price response to a block trade (Chan and Lakonishok 1993), and delayed price
discovery (Cohen et al. 1980).

Noise, as contrasted with information, is well-documented in the market microstruc-
ture literature. Three important types of noise have been identified and extensively studied:
discrete, clustering, and nonclustering. First, intraday prices move discretely (tick by tick),
resulting in “discrete noise.” Second, because prices do not distribute evenly on all ticks,
but gather more on integer and half ticks, “price clustering” is obtained. Harris (1991)
confirmed that this phenomenon is remarkably persistent through time, across assets,
and across market structures. Third, the distribution of price changes3 and the outliers
in prices show the existence of “nonclustering noise,” which includes other unspecified
noise.

Noise creates the major distinction between the macro- and micromovements. Black
(1986) noted that noise renders our observations of value imperfect by creating a wedge
between price and intrinsic value, and it provides an impetus for trading in financial
markets. Hasbrouck (1996) pointed out that information has a long-term, permanent
impact whereas noise has a short-term, transitory impact on price. In the low-frequency
macroprice data, the impact of noise is assumed to be small, hence the price process is
assumed to be indistinguishable from its value. However, in the high-frequency data, the
impact of noise cannot be neglected, and therefore the price process must be distinguished
from its value process and noise must be modeled explicitly.

In this paper, a partially observed model for the micromovement is proposed. The
aim is to bridge the gap between the macro- and micromovements caused by noise. The

1 The impact of price discreteness on parameter estimation was studied by Gottlieb and Kalay (1985),
Cho and Frees (1988), and Ball (1988).

2 Price clustering was described first in the academic literature by Osborne (1962) and then by Niederhoffer
(1965, 1966). There are a number of theories that explain price clustering. Niederhoffer (1965) argued that
it is a consequence of limit and stop orders tending to be placed on specialists’ books at even eighths. From
an economic perspective, clustering is often characterized as arising when market participants agree (per-
haps implicitly) to a price increment that is coarser than the technically mandated minimum. Harris (1991)
suggested that such a convention arises from traders seeking to minimize negotiation costs, to avoid ex-
tended rounds of bargaining over amounts of diminishing importance. Christie and Schultz (1994) observed
excessive clustering in NASDAQ and suspected collusion among NASDAQ dealers. Their papers led to mar-
ket reforms in NASDAQ that reduced clustering and trading costs (see Barclay et al. 1999). Godek (1996)
provided a theory of preference trading and Grossman et al. (1997) presented a competitive theory of clus-
tering that emphasizes the effect of uncertainty, the size of transactions, volatility, and the informational and
transactional roles of quotations on the degree of clustering.

3 See the last pair of plots in Figure 5.1.
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model maintains the strong connection between the macro- and micromovements and
distinguishes intrinsic value from price. The value process is formulated by a martingale
problem and is assumed to be partially observed through prices, which are discrete in state
space. Prices are observed at the unevenly spaced trading times driven by a conditional
Poisson process. The price process is constructed from the value process by including the
three types of noise. The most prominent feature of the proposed model is that prices can
be viewed as a collection of counting processes of price levels. Consequently, the model
can be formulated as a filtering problem with counting process observations, and filtering
equations can be derived. Under this representation, the whole sample paths of counting
processes are observable and the complete information of prices and trading times can
be utilized in parameter estimation.

Intraday data are discrete in value, irregularly spaced in time, and extremely large in
size. Despite recent advances in econometrics, obtaining reliable parameter estimates for
even simple micromovement models is extremely challenging. The Bayes estimation via
filtering introduced in this paper represents a significant advance in real-time estimation.
One key contribution is that a theorem on the convergence of conditional expectation of
the model is proved. The theorem suggests that the Markov chain approximation method
may be applied to construct a consistent recursive algorithm to compute the approximate
posterior and then the Bayes estimates.

To demonstrate the usefulness of the proposed structure, a simplified version of the
model and its recursive algorithm are constructed. Simulation shows that the simplified
model conforms to the sample characteristics of the micromovement of stock prices
and the computed Bayes estimates converge to their true values. Moreover, the recursive
algorithm is sufficiently fast to provide real-time estimates. Finally, the tested procedure
is applied to one month of transaction prices for Microsoft to obtain the Bayes estimates.

In Section 2 the model is developed in two equivalent ways, one by construction and
the other by formulating it into a filtering problem with counting process observations.
The former approach is intuitive, but it is the latter framework that provides the foun-
dation for the statistical analysis utilizing complete information. In Section 3 we study
the likelihoods and the posterior of the proposed model and derive the filtering equa-
tions. Bayes parameter estimation via filtering is introduced in Section 4. In Section 5
a simplified version of the model and its recursive algorithm are constructed in detail.
The consistency of the Bayes parameter estimates for the simplified model is proved.
Simulation and estimation results based on real data are also presented. Summary and
concluding remarks are contained in Section 6.

2. THE MODEL

The model proposed is predicated on the simple intuition that the price is formed from
an intrinsic value process by incorporating the noises that arise from the trading activity.
Throughout, it is assumed that all stochastic processes are right continuous with left
limits (cadlag).

Suppose that the value process X cannot be observed directly, but can be partially
observed through the price process, Y. Suppose that X lives in a continuous state space
and Y lives in a discrete state space given by the multiples of the minimum price variation,
a tick, which is assumed to be 1

M. The combination of (X, Y) provides a natural, partially
observed framework for the micromovement process.

Prices can only be observed at irregularly spaced trading times, which are mod-
eled by a conditional Poisson process. The rate of trading activity is described by an
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intensity function. Easley and O’Hara (1992) observed that trading intensity may de-
pend on volatility. Our framework is more general in that we allow the intensity
to depend on the parameters of the model, intrinsic value, and trading time; that
is, the intensity function is a(θ (t), X(t), t), where θ is a vector of parameters in the
model.

For the purpose of allowing time-dependent parameters such as stochastic volatility,
and in preparation for parameter estimation, we augment the partially observed model
(X, Y) to (θ, X, Y). Assume (θ, X, Y) is defined in a complete probability space (�,F, P)
with a filtration {Ft}0≤t≤∞. Since the macromovement models are appropriate for the
value processes, we invoke a mild assumption on (θ, X) so that all relevant stochastic
processes are included.

ASSUMPTION 2.1. (θ, X) is the solution of a martingale problem for a generator A such
that

Mf (t) = f (θ (t), X(t)) −
∫ t

0
A f (θ (s), X(s)) ds

is an F θ,X
t -martingale, where F θ,X

t is the σ -algebra generated by (θ (s), X(s))0≤s≤t.

When θ is a time-invariant vector of parameters, Assumption 2.1 can be simplified as
follows.

ASSUMPTION 2.1′. X is the solution of a martingale problem for a generator Aθ such
that

Mf (t) = f (X(t)) −
∫ t

0
Aθ f (X(s)) ds

is an F X
t -martingale, where F X

t is the σ -algebra generated by (X(s))0≤s≤t.

The martingale problem and the generator approach (Ethier and Kurtz 1986) provide a
powerful tool for the characterization of Markov processes. Their advantages are shown
in Section 3 where the filtering equations are derived, and in Section 4 where the recursive
algorithm is developed. Three examples illustrates the generality of Assumption 2.1.

EXAMPLE 2.1. The GBM model in SDE form is

d X(t)
X(t)

= µ dt + σ dW (t),(2.1)

where W(t) is a standard Brownian motion. Its generator is

A1 f (x) = Aθ,1 f (x) = 1
2
σ 2x2 ∂2 f

∂x2
(x) + µx

∂ f
∂x

(x),

where θ includes µ and σ .

EXAMPLE 2.2. Stochastic volatility model in SDE form is

d X(t) = cσ 2(t) dt +
√

V(t) dW (t)

dV(t) = (w − βV(t)) dt + αV(t) dB(t),



MICROMOVEMENT OF ASSET PRICES WITH BAYES ESTIMATION 415

where V(t) = σ 2(t), and W(t) and B(t) are independent standard Brownian motions. The
generator for this model is

Aθ f (x, v) = 1
2

v
∂2 f
∂x2

(x, v) + cv
∂ f
∂x

(x, v) + 1
2
α2v2 ∂2 f

∂v2
(x, v) + (w − θv)

∂ f
∂v

(x, v),

where θ includes c, w, β, and α. This is the limiting diffusion model of GARCH(1,1)
(Nelson 1990).

EXAMPLE 2.3. The jump-GBM model (Merton 1976) in SDE form is

d X(t)
X(t)

= µ dt + σ dW (t) + YN(t)dN(t),

where N(t) is a Poisson process independent of W(t) and it has intensity λ. The jump-
magnitudes {Yi } are i.i.d. random variables with continuous density qY(y). Its generator
is

Aθ f (x) = A1 f (x) + λ

∫
[ f (x(1 + z)) − f (x)]qY(z) dz,

where A1 is defined in Example 2.1 and θ includes µ, σ and parameters of qY(y).

As the above examples show, the additive property of generator is useful in produc-
ing more complicated models from simpler formulations. Furthermore, the affine jump-
diffusion models, recently popularized by Duffie, Pan, and Singleton (2000), are also
special cases of Assumption 2.1.

There are two equivalent methods to build the model proposed in this paper from
the value process. The first constructs Y from X by incorporating noises. The second
formulates (X, Y) as a filtering problem with counting process observations. The former
approach is intuitive and is related to a state space model; the latter approach is useful
for statistical analysis and is related to the hidden Markov model presented in Elliott,
Lakhdar, and Moore (1995).

2.1. Construction of Y from X

There are three general steps in constructing Y from X. First, specify the value process
X(t). Next, determine trading times t1, t2, . . . , ti , . . . , which may be driven by a conditional
Poisson process with an intensity a(X(t), θ (t), t). Finally, Y(ti ), the price at time ti , is
determined by

Y(ti ) = F(X(ti )),

where y = F(x) is a random transition function with the transition probability p(y | x).
Under this construction, the observable price is produced from the value process by

combining noises when a trade occurs. Information affects X(t), the value of an asset, and
has a permanent influence on the price, whereas noise affects F(x), the random transition
function, and only has a transitory impact on price. This formulation is similar to the
structural model proposed by Hasbrouck (1996) in that X(t) is the permanent component
and F(x) is the transient component.

Our framework subsumes two related models. One is the rounding model where Y(ti ) =
R [X(ti ), 1

M] with probability one, where F(x) is deterministic. It was studied by Gottlieb
and Kalay (1985), Cho and Frees (1988), and Ball (1988). The second is the ask-bid model
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developed by Harris (1990). Suppose that c is one half of the bid and ask spread. Then,
Y(ti ) = R [X(ti ) ± c, 1

M], each with probability one half.
In the rest of this section, we focus on building F(x) to accommodate the three types

of noise that are well-documented in financial literature: discrete noise, clustering noise,
and nonclustering noise.4

To simplify notation, fix i and set x = X(ti ), y = Y(ti ), and y′ = Y′(ti ) = R [X(ti ) +
Vi ,

1
M], where Vi is defined as the nonclustering noise. Instead of directly specifying p(y | x)

of F(x), we move the value x to the price y in three steps.

Step 1. Incorporate discrete noise by rounding off x to its closest tick, R [x, 1
M].

Without other noises, trades should occur at this tick, which is closest to the stock value.

Step 2. Incorporate nonclustering noise by adding V; y′ = R [x + V, 1
M], where V is

the nonclustering noise of trade i at time ti . V can depend on x, but the sequences {Vi }
are assumed to be serially independent given the value sequence {xi }.

Nonclustering noise is intended to explain three discreteness-related sample charac-
teristics of transactional data that cannot be explained by the rounding model. First, the
nonclustering noise considerably increases the probability of the successive price changes
that are more than a tick. Second, it allows the prices of trades occurring within the same
second to differ and the difference can be two or more ticks. Finally, it produces outliers.

Step 3. Incorporate clustering noise by biasing y′. After rounding the value process
and adding nonclustering noise, the fractional part of y′ should still be approximately
uniformly distributed. Here, we bias y′ through a random biasing function b(·) to reflect
price clustering. Similar to the nonclustering noise, the biasing function b(·) can also
depend on x, but the sequence of {bi (·)} is assumed to be independent given the value
sequence {y′

i }. The random biasing function is similar to the clustering control variable
proposed in Hasbrouck (1999).

In summary, the construction is

Y(ti ) = bi

(
R

[
X(ti ) + Vi ,

1
M

])
= F(X(ti )),

where the rounding function takes care of price discreteness, Vi takes care of nonclustering
noise, and the random biasing function bi takes care of clustering noise. The transition
probability p(y | x) of F can be computed given the specifications of V and b(·) by the
following formula:

p(y | x) =
∑

y′
p(y | y′)p(y′ | x),(2.2)

where p(y′ | x) is the transition probability from the value x to y′, and p(y | y′) is the
transition probability from y′ to the price y.

Alternatively, the model can also be framed as a filtering problem with counting process
observations. This is important for statistical analysis because under this framework we
are able to derive the filtering equations, which characterize the likelihoods and the
posterior of the model.

4 Although stocks have been traded using dollars and cents at the NYSE since 2000, these three types of
noise are still significant.
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2.2. Counting Process Observations

In Section 2.1, we view the prices in the order of trading occurrence over time. Alter-
natively, we can view them in the levels of price. That is, we view the prices as a collection
of counting processes in the following form:

�Y(t) =




N1
( ∫ t

0 λ1(θ (s−), X(s−), s−) ds
)

N2
( ∫ t

0 λ2(θ (s−), X(s−), s−) ds
)

...

Nn
( ∫ t

0 λn(θ (s−), X(s−), s−) ds
)




,(2.3)

where Yk(t) = Nk(
∫ t

0 λk(θ (s−), X(s−), s−) ds) is the counting process recording the cu-
mulative number of trades that have occurred at the kth price level (denoted by yk) up to
time t.

Under this representation, (θ (t), X(t)) becomes the signal process, which cannot be
observed directly, and �Y(t) becomes the observation process, which is corrupted by noise.
Hence, (θ, X, �Y) is framed as a filtering problem with counting process observations.

We invoke three mild assumptions so that the model in Section 2.1 is equivalent to
the counting process observations in equation (2.3). The equivalence ensures that the
statistical analysis based on the latter specification can be applied to the former.

ASSUMPTION 2.2. Nk’s are unit Poisson processes under measure P.

REMARK 2.1. The random time change implies that Yk(t) = Nk(
∫ t

0 λk(θ (s−),
X(s−), s−) ds) is a counting process with intensity

∫ t
0 λk(θ (s−), X(s−), s−) ds, and

Yk(t) − ∫ t
0 λk(θ (s−), X(s−), s−) ds is a martingale (see Ethier and Kurtz 1986,

Chap. 6).

ASSUMPTION 2.3. (θ, X), N1, N2, . . . , Nn are independent under measure P.

REMARK 2.2. This assumption does not imply that (θ, X), Y1, Y2, . . . , Yn are inde-
pendent under P, because Y depends on (θ, X) through the intensities; however, it does
imply that there exists a reference measure Q and that after a suitable change of measure
to Q, (θ, X), Y1, . . . , Yn will become independent, and Y1, Y2, . . . , Yn will become unit
Poisson processes. The reference measure Q plays an important role in deriving the fil-
tering equation in Section 3 and in proving the consistency of the recursive algorithm in
Section 4.

REMARK 2.3. These two assumptions are general since a large class of counting pro-
cesses can be transformed into this setup by the technique of change of measure (see
Bremaud 1981, p. 165).

ASSUMPTION 2.4. The intensity, λk(θ, x, t) = a(θ, x, t)p(yk | x), where a(θ, x, t) is the
total intensity at time t and p(yk | x) is the transition probability from x to yk, the kth price
level.

REMARK 2.4. This assumption imposes a desirable structure for the intensities of the
model. It means that the total trading intensity a(θ (t), X(t), t) determines the overall rate
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of trade occurrence at time t and p(yk | x) determines the proportional intensity of trade
at the price level, yk, when the value is x.

The point process literature refers to Yk (the record of trades occurring at the kth price
level) as a thinned point process of the total trading process �Y. A heuristic argument to
obtain the intensity of Yk(t) is the following:

P
{
Yk(t + h) − Yk(t) > 0

∣∣F θ,X
t

} = a(θ (t), X(t), t)p(yk | X(t)).

The structure of intensities guarantees the equivalence of the above two approaches
because the conditional finite-dimensional distributions of the price Y given {X(s) : 0 <

s < t} can be shown to be identical in Sections 2.1 and 2.2. It also allows us to generalize
the finite price levels to the countably infinite price levels to accommodate the GBM case.

A final assumption ensures the uniqueness of the filtering equation and the consistency
of the Bayesian estimates for the simplified model discussed below.

ASSUMPTION 2.5. The total intensity, a(θ, x, t), is uniformly bounded from below and
above; that is, there exist constants C1 and C2 such that 0 < C1a(θ, x, t) ≤ C2 for all t > 0.

3. FOUNDATIONS FOR STATISTICAL INFERENCE

In this section, we study the likelihood, the marginal likelihood, and the posterior of the
proposed model, and establish their relationships with the unnormalized and normalized
filtering equations.

3.1. The Likelihoods

The observable data are a sequence {(ti , Y(ti ))}, representing trading times and
prices. Standard econometric approaches (for a brief survey and new development, see
Ait-Sahalia 2002) would consider the likelihood of the form

f ((yt1 , t1), (yt2 , t2), . . . , (ytn , tn); θ ),

which, in terms of measure theory, is the Radon-Nikodym derivative with respect to
the dominating measure of an n-product Lebesgue measure at times t1, t2, . . . , tn . The
likelihood implies that trades occur at the time t1, t2, . . . , tn . This likelihood, in terms of
stochastic process, is a finite-dimensional distribution of the process. It contains only the
information of a discrete-time subset of a sample path where the trades occur. It is called
a discrete-time likelihood because it is the likelihood given a discrete-time subset of the
sample path.

Correspondingly, there is a continuous-time likelihood, which is the likelihood given
the whole sample path. Just as the whole sample path contains more information than any
discrete-time subset, the continuous-time likelihood contains more information about the
process than any discrete-time counterpart. The continuous-time likelihood is the Radon-
Nikodym derivative with respect to the dominating measure such as the Wiener measure,
the Poisson measure, or their product. In most settings, the whole sample path may not
be observable. Even when it is observable, the continuous-time likelihood may not exist
or may not be computable. However, when the whole sample path is observable and the
continuous-time likelihood is available, it provides a better informational base than any
discrete-time likelihood for the inference about the stochastic processes.
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One key contribution of this paper is that when the proposed model is framed as a filter-
ing problem with counting process observations, the whole sample paths of the counting
processes are observable. The observed counting processes imply that trades occur and
only occur at the time t1, t2, . . . , tn and the corresponding continuous-time likelihood
has the same implication. Under this representation, the complete information—that
is, trades occur and only occur at the time t1, t2, . . . , tn—is used in the continuous-time
likelihood for statistical inference.

Before we present the continuous-time likelihood of the model, we specify the probabil-
ity space (�,F, P) for (θ, X, �Y), and concisely define some terminology. Let DRn [0, ∞)
be the space of sample paths of the right continuous functions with left limits in the
state space Rn . DRn [0, ∞) is embedded with the Skorohod topology. LetB(DRn [0, ∞)) be
the Borel σ -algebra of DRn [0, ∞)). Then, � = DRp [0, ∞) × DR[0, ∞) × DRn [0, ∞),F =
B(DRp [0, ∞)) × B(DR[0, ∞)) × B(DRn [0, ∞)), and P = Pθ,x × Py | θ,x, where Pθ,x is the
probability measure on DRp+1 [0, ∞) for (θ, X) such that Mf (t) in Assumption 2.1 is a
F θ,X

t -martingale, and Py | θ,x is the conditional probability measure on DRn [0, ∞) for �Y
given (θ, X). Under this structure, �Y depends on (θ, X).

Assumptions 2.2 and 2.3 imply that there exists a reference measure Q such that P is
absolutely continuous with respect to Q and Q = Pθ,x × Q�y. Under the reference measure
Q, the counting processes are n independent unit Poisson processes, and �Y is independent
of (θ, X).

The Radon-Nikodym derivative (see Bremaud 1981, pp. 165–167) of the model is

L(t) = dP
d Q

(t) = dPθ,x

dPθ,x
(t) × dPy | θ,x

d Q�y
(t) = dPy | θ,x

d Q�y
(t)

=
n∏

k=1

exp

{ ∫ t

0
log λk(θ (s−), X(s−), s−) dYk(s) −

∫ t

0
[λk(θ (s), X(s), s) − 1] ds

}
.

In SDE form,

L(t) = 1 +
n∑

k=1

∫ t

0
[λk(θ (s−), X(s−), s−) − 1]L(s−) d(Yk(s) − s),

where L(t) is the joint likelihood of (θ, X, �Y). However, X and the stochastic components
of θ (such as stochastic volatility) cannot be observed, and then L(t) is not computable.
What is needed for the statistical analysis is the likelihood of �Y alone.

REMARK 3.1. The following analogy suggests a way to obtain the likelihood of Y
from L(t). Suppose f (θ, x, y) is the joint density for real random variables (θ, X, Y) with
respect to a Lebesgue measure Q′. Then the marginal density of Y can be obtained by
integrating on (θ, X), or in terms of conditional expectation as:

fY (y) =
∫ ∫

f (θ, x, y) dθ dx = EQ′
[ f (θ, X, Y) | Y = y].

To present the likelihood of Y concisely, two definitions are required.

DEFINITION 3.1. Let F �Y
t = σ {( �Y(s))|0 ≤ s ≤ t} be the σ -algebra generated by the

observed sample path of �Y. F �Y
t is all the available information up to time t.
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DEFINITION 3.2. Let φ( f, t) = EQ[ f (θ (t), X(t))L(t) |F �Y
t ] be the conditional expecta-

tion of f L given F �Y
t .

From a frequentist’s viewpoint, assuming that θ (0) is fixed, the likelihood of Y is
EQ[L(t) |F �Y] = φ(1, t). From a Bayesian’s viewpoint, assuming a prior on θ (0), the
marginal (or integrated) likelihood of Y is also EQ[L(t) |F �Y] = φ(1, t).

3.1.1. Maximum Likelihood versus Bayesian Inference. Maximum likelihood (ML)
and Bayesian methods are two major approaches in statistical inference. Under regular
conditions on the likelihood functions, ML estimates are consistent, asymptotically nor-
mal, and asymptotically efficient. Moreover, there is a generalized likelihood ratio (GLR)
test for hypothesis testing. Similarly, under regular conditions, Bayes estimates have the
same asymptotic properties as MLE and both estimates are asymptotically equivalent
(Ghosal, Ghosh, and Samanta 1995). Also, Bayesian hypothesis testing and model selec-
tion procedure are available via Bayes factor (Kass and Raftery 1995).

However, the likelihood of the proposed model is irregular. This implies that the de-
sirable properties of ML estimates of the proposed model are unknown and the GLR
test is not applicable. Hence, the ML approach is less preferable, although the likelihood
function can be computed using the technique developed in Section 4.

In this paper, we choose the Bayesian approach for two additional reasons. First,
Bayes estimates are the least mean square error estimates, and the approximate posterior
computed by the recursive algorithm developed in Section 4 provides more information
than ML estimates. Second, even though the GLR test fails for the model, the Bayesian
hypothesis testing procedure via Bayes factor still works and the Bayes factor, which is
the ratio of the marginal likelihoods, is computable.

3.2. The Posterior for Bayes Estimation

Two additional terms are defined before the posterior of (θ, X) is presented.

DEFINITION 3.3. Let πt be the conditional distribution of (θ (t), X(t)) given F �Y
t .

DEFINITION 3.4. Let π ( f, t) = EP[ f (θ (t), X(t)) |F �Y
t ] = ∫

f (θ, x)πt(dθ, dx) be the
conditional expectation of f (θ (t), X(t)) given F �Y

t .

The Bayes Formula (see Bremaud 1981, p. 171) provides the relationship between
φ( f, t) and π ( f, t):

EP[
f (θ (t), X(t))

∣∣F �Y
t

] = EQ
[

f (θ (t), X(t))L(t)
∣∣F �Y

t

]
EQ

[
L(t)

∣∣F �Y
t
] ,

or, equivalently,

π ( f, t) = φ( f, t)
φ(1, t)

.

That is, π ( f, t) is obtained by normalizing φ( f, t) with φ(1, t). Hence, the equation gov-
erning the evolution of φ( f, t) is called the unnormalized filtering equation, and that of
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π ( f, t) is called the normalized equation. The Bayes Formula implies that φ( f, t) can
determine π ( f, t), but the converse is not usually true.

Again, from a Bayesian’s viewpoint, assuming priors on θ (0), πt becomes the joint pos-
terior of (θ (t), X(t)). The normalized filtering equation then determines how πt evolves.
Together with the Markov chain approximation method in Section 4, the normalized
filtering equation provides an effective way to compute the approximate joint posterior
and then the Bayes estimates for the parameters.

3.3. Filtering Equations

The filtering equations provide an effective means to characterize φ( f, t) and π ( f, t).
Note that φ( f, t), which determines the likelihood or marginal likelihood, is characterized
by the unnormalized filtering equation. And π ( f, t), which determines the posterior, is
characterized by the normalized filtering equation, and is the optimum filter in the sense
of least mean square error (Kallianpur 1980). We summarize the filtering equations in
the following theorem.

THEOREM 3.1. Suppose that (θ, X) satisfies Assumption 2.1 and that �Y is the counting
process observations defined in equation (2.3) with Assumptions 2.2–2.5. Then, for every
t > 0 and every f in the domain of generator A, φ( f, t) is the unique solution of the SDE,
the unnormalized filtering equation,

(3.1)

φ( f, t) = φ( f, 0) +
∫ t

0
φ(A f − (a − n) f, s) ds +

n∑
k=1

∫ t

0
φ((apk − 1) f, s−) dY k(s),

where a = a(θ (t), X(t), t), is the trading intensity, and pk = p(yk | x) is the transition prob-
ability from x to yk.

πt is the unique solution of the SDE, the normalized filtering equation,

π ( f, t) = π ( f, 0) +
∫ t

0
[π (A f, s) − π ( f a, s) + π ( f, s)π (a, s)] ds(3.2)

+
n∑

k=1

∫ t

0

[
π ( f apk, s−)
π (apk, s−)

− π ( f, s−)
]

dYk(s).

REMARK 3.2. When the trading intensity is deterministic, a(θ (t), X(t), t) = a(t), the
normalized filtering equation is simplified as

(3.3)

π ( f, t) = π ( f, 0) +
∫ t

0
π (A f, s) ds +

n∑
k=1

∫ t

0

[
π ( f pk, s−)
π (pk, s−)

− π ( f, s−)
]

dY k(s).

Proof: The proof of Theorem 3.1 is given in Appendix A.

Note that a(t) disappears in equation (3.3). This reduces the computation greatly in
the Bayesian parameter estimation, hence this convenient case is studied in detail. The
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trade-off is that the relationship between trading intensity and other parameters (such as
volatility) is excluded.

Let the trading times be t1, t2, . . . , then equation (3.3) can be written in two parts:
the propagation equation, which describes the evolution without trades, and the updating
equation, which describes the updating when a trade occurs. The propagation equation
has no random component and is written as

π ( f, ti+1−) = π ( f, ti ) +
∫ ti+1−

ti
π (A f, s) ds.

This implies that when there are no trades, the posterior evolves deterministically. More-
over, when A is a diffusion generator, the propagation equation is a parabolic-type partial
differential equation.

Assume the price at time ti+1 occurs at the kth price level, then the updating equation
is

π ( f, ti+1) = π ( f pk, ti+1−)
π (pk, ti+1−)

.

It is random because the price level is random. The preceding two equations provide the
foundation for Bayes estimation via filtering.

4. BAYES ESTIMATION VIA FILTERING

Through the normalized filtering equation, we are able to compute the continuous-time
posterior and the Bayes estimate, which is the posterior mean. The core of Bayesian
estimation via filtering is to construct an algorithm to compute the approximate condi-
tional distribution, which becomes the approximate posterior after a prior is assigned.
The algorithm based on a filtering equation is naturally recursive with every trade. The
recursiveness is a desirable feature because a recursive algorithm handles a datum at a
time, so it requires less memory, makes real-time updating implementable, and can handle
large data sets.

One basic requirement for the recursive algorithm is consistency: The conditional distri-
bution computed by the recursive algorithm must converge to the true one. The following
theorem proves the convergence of the conditional expectation. The theorem is important
in that it provides the theoretical foundation for consistency. Careful examination of the
theorem provides a recipe for constructing a consistent recursive algorithm.

4.1. A Convergence Theorem on Conditional Expectation

Suppose the state space of (θ, X) is discretized with εi as the length between lattices
in the ith component of θ and εx as that of X. Let ε = (ε1, . . . , εp). Then, (θε, Xεx), an
approximation for (θ, X), can be constructed. Define

�Yε(t) =




N1
( ∫ t

0 λ1(θε(s−), Xεx(s−), s−) ds
)

N2
( ∫ t

0 λ2(θε(s−), Xεx(s−), s−) ds
)

...

Nn
( ∫ t

0 λn(θε(s−), Xεx(s−), s−) ds
)


 ,(4.1)
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where ε = max(εx, |ε|), and defineF �Yε

t = σ ( �Yε(s), 0 ≤ s ≤ t). We use the notation, Xε ⇒
X, to mean Xε converges weakly to X in the Skorohod topology as ε → 0.

THEOREM 4.1. Suppose that (θ, X, �Y) is on the probability space (�,F, P) with As-
sumptions 2.1–2.5. �Yε is defined by (4.1). Suppose that (θε, Xεx,

�Yε) is on (�ε,Fε, Pε), and
Assumptions 2.1–2.5 also hold for (θε, Xεx,

�Yε). If (θε, Xεx) ⇒ (θ, X) as ε = max{εx, |ε|} →
0, then

(i) �Yε ⇒ �Y as ε →0; and
(ii) EPε [F(θε(t), Xεx(t)) |F �Yε

t ] ⇒ EP[F(θ (t), X(t)) |F �Y
t ] as ε → 0 for function F in

the domain of the generator A.

Proof: The proof relies on three related theorems.

1. Continuous Mapping Theorem. See Corollary 1.9 in Chapter 3 of Ethier and
Kurtz (1986).

2. Kurtz and Protter’s Theorem on the Convergence of Stochastic Integrals. See The-
orem 2.2 of Kurtz and Protter (1991) and their Example 3.3.

3. Goggin’s Theorem on Convergence of Conditional Expectation. See Theorem 2.1
of Goggin (1994).

Since (θε, Xεx) ⇒ (θ, X), the Continuous Mapping Theorem implies that �Yε ⇒ �Y.
Then we have (θε, Xεx,

�Yε) ⇒ (θ, X, �Y). Assumptions 2.2 and 2.3 for (θε, Xεx,
�Yε) imply

that there exists a reference measure Qε such that, under Qε, Yε,k, the kth component of
�Yε, for k = 1, 2, . . . , n are independent unit Poisson processes, and they are independent

of (θε, Xεx). The Radon-Nikodym derivative dPε/d Qε is

Lε(t) =
n∏

k=1

exp

{ ∫ t

0
log λk(θε(s−), Xεx(s−), s−) dYε,k(s)

−
∫ t

0
[λk(θε(s), Xεx(s), s) − 1] ds

}
.

Kurtz and Protter’s Theorem implies that∫ t

0
log λk(θε(s−), Xεx(s−), s−) dY ε,k(s) ⇒

∫ t

0
log λk(θ (s−), X(s−), s−) dY k(s)

and ∫ t

0
[λk(θε(s), Xεx(s), s) − 1] ds ⇒

∫ t

0
[λk(θ (s), X(s), s) − 1] ds.

The Continuous Mapping Theorem again implies Lε(t) ⇒ L(t). Therefore, we have the
triplet ((θε, Xεx), �Yε, Lε) ⇒ ((θ, X), �Y, L). Goggin’s Theorem implies that Theorem 4.1
follows. �

REMARK 4.1. This theorem guarantees that as long as (θε, Xεx) is an approximation
of (θ, X), Yε is an approximation of �Y and the conditional expectation of (θε, Xεx) is an
approximation of (θ, X) given the observed sample paths of the counting processes. When

we take “F” as an appropriate indicator function, EPε [F(θε(t), Xεx(t)) |F �Yε

t ] becomes the
conditional probability mass function for (θε, Xεx). Theorem 4.1, then, implies that the
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conditional probability mass function is an approximation of the conditional distribution
of (θ, X).

Next, a recursive algorithm is constructed to compute such a conditional probability
mass function.

4.2. Construction of a Consistent Recursive Algorithm

For the nonlinear filtering problem, the equally spaced in time Markov chain approx-
imation method is well suited for the computation of the approximation to an optimum
filter (see Chapter 12 of Kushner and Dupuis 1994). Although trades occur irregularly
spaced in time, we still apply the same idea of Markov chain approximation here.

Theorem 4.1 provides a recipe for constructing a consistent recursive algorithm. The
Markov chain approximation approach is used to construct (θε, Xεx) and then the recur-
sive algorithm. For simplicity, the recursive algorithm in this section is constructed for
equation (3.3), which is the case when the trading intensity is deterministic. It is straight-
forward to generalize the recursive algorithm to the filtering equation (3.2), where trading
intensity depends on other variables.

There are four steps in the process of deriving the recursive algorithm.

Step 1. Prepare the appropriate state processes in the appropriate probability space
with the appropriate filtering equation. First, separate the parameters into two types ac-
cording to whether they are time (in-) dependent. That is, set the p-dimensional parameter
vector, θ (t) = (ξ, η(t)), where p1-dimension ξ does not depends on time but p2-dimension
η(t) does.

Next, set the state processes to be (ξ, η(t), X(t)) and assume (ξ, η, X, �Y) lives in a
complete probability space (�,F, P) with the Skorohod topology. Define � = � ×
DRp2+1 [0, ∞) × DRn [0, ∞), where � is a compact subset in Rp1+p2+1 as the parameter
space for ξ × η(0) × X(0). Define F = B(�) × B(DRp2+1 [0, ∞)) × B(DRn [0, ∞)) where
B(�) is a Borel σ -algebra on �. Define P = Pξ,η(0),X(0) × Pη,X|ξ,η(0),X(0) × P�y|ξ,η,X, where
Pξ,η(0),X(0) is a prior on �, Pη,X|ξ,η(0),X(0) is the conditional probability measure such that
under the joint probability measure Pθ,X = Pξ,η,X = Pξ,η(0),X(0) × Pη,X|ξ,η(0),X(0), Mf (t) in
Assumption 2.1 is a F X,θ

t -martingale, and P�y|ξ,η,X is the conditional probability measure
of the counting vector process �Y given ξ, η, X.

For the new state processes and the new probability space, we redefine the correspond-
ing new conditional distribution and its expectation.

DEFINITION 4.1. πt is the conditional distribution of (ξ, η(t), X(t)) given F �Y
t .

DEFINITION 4.2. π ( f, t) = EP[ f (ξ, η(t), X(t)) |F �Y
t ] = ∫

f (ξ, η, x)πt(dξ, dη, dx).

By Theorem 3.1, we obtain the new filtering equation for π ( f, t) defined above in
the same form as equation (3.3) when trading intensity is a(t). This is the conceptual
simplicity we gain when we treat the unknown parameters of interest as the unobserved
state process, which is an important idea in Bayesian analysis for latent variables.

Step 2. Construct the Markov chain approximation to (ξ, η, X). First, discretize the
state space of (ξ, η, X) with mesh sizes (εξ , εη, εx) and set ε = max(|εξ |, |εη|, εx). The
discretized state space of � is a natural approximate for �. But for the stochastic process
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(η(t), X(t)), its natural approximation is a Markov chain. Second, observe that the con-
struction of an approximate Markov chain can be transformed to construct a Markov
chain generator, Aε, such that Aε → A as ε → 0. The generators for asset price models
can be classified as diffusion and jump generators. A diffusion generator involves first-
and second-order differentiation. The finite difference type approximation can be applied
to the diffusion generator in constructing a birth and death generator, which is a simple
Markov chain generator. (This is illustrated in Section 5.2 where we deal with a simplified
model.) The jump generator involves integration, and the usual rectangle approximation
for integral can be employed to construct a Markov chain generator. Following these two
rules, we are able to construct the approximate Markov chain generators for examples in
Section 2. Two examples are given below. For clarification, assume that x and ξ are in the
discretized spaces in the following examples.

EXAMPLE 4.1. Set ξ = (µ, σ, ρ), where ρ is a vector of parameters for different types
of noise. The approximate birth and death generator for Example 2.1 is

Aε,1 f (ξ, x) = a(ξ, x)( f (ξ, x + εx) − f (ξ, x)) + b(ξ, x)( f (ξ, x − εx) − f (ξ, x)),

where

a(ξ, x) = 1
2

(
σ 2x2

ε2
x

+ µx
εx

)
, b(ξ, x) = 1

2

(
σ 2x2

ε2
x

− µx
εx

)
.

EXAMPLE 4.2. Set ξ = (µ, σ, λ, ρ), where ρ is a vector of parameters for different types
of noise and jump magnitudes. The approximate Markov chain generator for Example
2.3 is

Aε f (ξ, x) = Aε,1 f (ξ, x) + λ
∑

z

[ f (ξ, z) − f (ξ, x)]q̂Y(z),

where Aε,1 is defined in Example 4.1, the summation is over all lattices of x, and q̂Y(z) =
P{Y ∈ [(z − 0.5εx)/x − 1, (z + 0.5εx)/x − 1)}.

The approximate Markov chain generator for Example 2.2 can be obtained similarly
as shown in Section 5.2. All Aε converges to A as ε → 0.

Based on Aε, the Markov chain, (θε(t), Xεx(t)) can be constructed as the approximate
model of (θ (t), X(t)), where θε(t) = (ξεξ

, ηεη
(t)) and θ (t) = (ξ, η(t)). Then, �Yε, defined by

equation (4.1), is obtained.

REMARK 4.2. The counting process observations can be chosen to be �Y(t) defined
by equation (2.3) or �Yε(t) depending on whether the driving process is (θ (t), X(t)) or
(θε(t), Xεx(t)). When we model the parameters and the stock value as (θ (t), X(t)), the
counting process observations of stock price are regarded as �Y(t). When we intend to
compute the posteriors of the parameters and the value process, we use (θε(t), Xεx(t))
to approach (θ(t), X(t)) and the counting process observations of price are regarded as
�Yε(t).

REMARK 4.3. By Theorem 4.1, when ε is small, the recursive algorithm computes the
posterior for the approximate model (θε, Xεx,

�Yε), which is close to the posterior of the
true model (θ, X, Y).

Step 3. Obtain the filtering equation for the approximate model. When (θ, X) is re-
placed by (θε, Xεx), A by Aε, �Y by �Yε, and there also exists a probability measure Pε to
replace P, then it is simple to check that Assumptions 2.1–2.5 also hold for (θε, Xεx,

�Yε). To
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present the filtering equation for the approximate model, the discretized approximations
of πt and π ( f, t) in Definitions 4.1 and 4.2 are defined as follows.

DEFINITION 4.3. Let πε,t be the conditional probability mass function of (ξεξ
,

ηεη
(t), Xεx(t)) given F �Yε

t .

DEFINITION 4.4.

πε( f, t) = EPε
[

f (ξεξ
, ηεη

(t), Xεx(t))
∣∣F �Yε

t
] =

∑
ξ,η,x

f (ξ, η, x)πε,t(ξ, η, x),

where (ξ, η, x) covers all lattices in the discretized state space.

Applying Theorem 3.1, we obtain the filtering equation of the approximate model in
a similar form:

(4.2)

πε( f, t) = πε( f, 0) +
∫ t

0
πε(Aε f, s) ds +

n∑
k=1

∫ t

0

[
πε( f pk, s−)
πε(pk, s−)

− πε( f, s−)
]

dY ε,k(s),

where Yε,k is the kth component of �Yε.
Similarly, the above filtering equation can be separated into the propagation equation,

πε( f, ti+1−) = πε( f, ti ) +
∫ ti+1−

ti
πε(Aε f, s) ds,(4.3)

and the updating equation (assuming that a trade at the kth price level occurs at time
ti+1),

πε( f, ti+1) = πε( f pk, ti+1−)
πε(pk, ti+1−)

.(4.4)

Step 4. Convert equations (4.3) and (4.4) to the recursive algorithm. First, assume
all the vectors in the discretized state space of ξ are indexed and represented as {ξ j , j ∈ J },
those of η at time t as {ηm, m ∈ M} and those of X at time t as {xl , l ∈ L}. Now, we define
the approximate posterior that the recursive algorithm computes.

DEFINITION 4.5. The posterior of the approximate model, (ξεξ
, ηεη

, Xεx, Yε), at time t
is denoted by

pε(ξ j , ηm, xl ; t) = P
{
ξεξ

= ξ j , ηεη
(t) = ηm, Xεx(t) = xl

∣∣F �Yε

t
}
.

The core of the conversion is to take f as the following indicator function, in which ξε

denotes ξεξ
, ηε(t) denotes ηεη

(t), and Xε(t) denotes Xεx(t).

I{ξε=ξ j ,ηε=ηm,Xε=xl }(ξε, ηε, Xε) def= I(ξ j , ηm, xl ).(4.5)

Then the following facts emerge:

πε(I(ξ j , ηm, xl ), t) = pε(ξ j , ηm, xl ; t),

πε(I(ξ j , ηm, xl )pk, t) = pε(ξ j , ηm, xl ; t)p(yk | xl ; ξ j , ηm),
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and

πε(pk, t) =
∑

j ′,m′,l ′
pε(ξ j ′ , ηm′ , xl ′ ; t)p(yk | xl ′ ; ξ j ′ , ηm′ ),

where the transition probability pk = p(yk | x) = p(yk | x; ξ, η).
Hence, the propagation equation (4.3) becomes

pε(ξ j , ηm, xl ; ti+1−) = pε(ξ j , ηm, xl ; ti ) +
∫ ti+1−

ti
πε(AεI, s) ds,(4.6)

where πε(AεI, s) depends on Aε. Note that AεI is a linear combination of some indicator
functions. Therefore, πε(AεI, s) is a linear combination of pε(·, ·, ·; s).

The updating equation (4.4) can be written as

pε(ξ j , ηm, xl ; ti+1) = pε(ξ j , ηm, xl ; ti+1−)p(yk | xl , ξ j , ηm)∑
j ′,m′,l ′ pε(ξ j ′ , ηm′ , xl ′ ; t)p(yk | xl ′ ; ξ j ′ , ηm′ )

(4.7)

if a trade at the kth price level occurs at time ti+1.
Next, we convert equation (4.6) to a recursive algorithm. Equation (4.6) is deterministic

and therefore one can employ the Euler scheme. After excluding the probability-zero event
that two or more jumps occur at the same time, there are two possible cases for the trade
waiting time. Case 1, if ti+1 − ti ≤ LL, a length controller, then we can approximate
pε(ξ j , ηm, xl ; ti+1−) by the following recursive equation

pε(ξ j , ηm, xl ; ti+1−) ≈ pε(ξ j , ηm, xl ; ti ) + πε(AεI, ti )(ti+1 − ti ).(4.8)

Case 2, if ti+1 − ti > LL, then we can choose a fine partition {ti,0 = ti , ti,1, . . . , ti,n =
ti+1} of [ti , ti+1] such that max j |ti, j+1 − ti, j | < LL and approximate pε(ξ j , ηm, xl ; ti+1−)
by applying repeatedly the recursive algorithm given by equation (4.8) from ti,0 to ti,1,
then ti,2, . . . , until ti,n = ti+1. Note that pε(ξ j , ηm, xl ; ti, j−) = pε(ξ j , ηm, xl ; ti, j ) for all j
except j = n, because pε(ξ j , ηm, xl ; t) is continuous in t in [ti , ti+1−).

Equations (4.7) and (4.8) constitute the recursive algorithm we employ to calculate the
posterior.

REMARK 4.4. pε(ξ j , ηm, xl ; ti+1) only depends on pε(·, ·, ·; ti+1−), which in turn de-
pends on pε(·, ·, ·; ti ), all previously available information. Therefore, once the prior dis-
tribution at time t = 0 is specified, the recursive algorithm can calculate the posteriors
based on available data.

The last step is to assign priors to ξ, η(0), and X(0). We assume independence among
ξ, η(0), and X(0). If there is no prior information about θ (0) available, we simply assign
uniform distributions to the discretized state space (ξ, η(0)) in a reasonable range and
assume all components are independent. For the prior of X(0), we have a better option.
Since the best estimate of X(0) is the first trading price, denoted by Y(0), we let X(0) = Y(0)
with probability 1.

4.3. Consistency of the Recursive Algorithm

Reviewing the construction of the recursive algorithm, we observe that there are two
approximations employed. The first is to approach the integral in the propagation equa-
tion (4.6). The Euler scheme is applied to approximate the integration equation and
the convergence of the Euler scheme is well-known. The second is more important. It
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approximates the filtering equation (3.3) by the filtering equation (4.2) of the approxi-
mate model. The weak convergence of equation (4.2) to equation (3.3) in the Skorohod
topology is guaranteed by Theorem 4.1. By taking f as the indicator (defined in equation
(4.5)) in equation (4.2), one obtains the recursive algorithm to compute pε(ξ j , ηm, xl ; t).
According to Theorem 4.1, pε(ξ j , ηm, xl ; t) converges to an expression related to the
true posterior (see below). In order to identify this expression, we first define three
neighborhoods.

Suppose ξ j is a vector in the discretized parameter space for ξ , which is represented by
{ξ j , j ∈ J }. ξd, j (or ξd ) is the dth component of the vector ξ j (or ξ ) and εξ,d is the mesh
size for the dth component of the discretized space for ξ . Define the neighborhood of ξ j

as

N(ξ j ) = {
(ξ1, ξ2, . . . , ξp1 ) : ξd, j − 1

2εξ,d ≤ ξd < ξd, j + 1
2εξ,d , d = 1, 2, . . . , p1

}
.

Similarly, define the neighborhoods for ηm and xl as N(ηm) and N(xl ). Now, the true
posterior that the recursive algorithm aims to approximate is defined as follows.

DEFINITION 4.6.

p(ξ j , ηm, xl ; t) = P
{
ξ ∈ Nξ j , η(t) ∈ Nηm , X(t) ∈ Nxl

∣∣F �Y
t

}
.

When one takes f to be the following indicator function,

I{ξ∈Nξ j ,η∈Nηm ,X∈Nxl }(ξ, η, x),

in equation (3.3), Theorem 4.1 implies pε(ξ j , ηm, xl ; t) → p(ξ j , ηm, xl ; t), for every t > 0
as ε → 0. This is because the indicator function just defined becomes the one in equation
(4.5) in the approximate model.

5. A SIMPLIFIED MODEL WITH BAYES ESTIMATION

We construct a simplified version of the foregoing general model, and use outline the
procedure for constructing a recursive algorithm. Simulation examples demonstrate
that this simplified model conforms to the real data and the recursive algorithm works
efficiently.

5.1. A Model with GBM as Value Process

In the simplified model, let GBM (equation (2.1)) be the intrinsic value process, where
information is generated by σ dW (t). The total trading intensity is deterministic and, as
shown in Remark 3.2, it drops out of the normalized filtering equation. A deterministic
intensity a(t) fits the duration data better than the naive assumption that the trading
intensity is time-invariant and it can explain the observation that trading activity is higher
in the opening and the closing periods.

The nonclustering noise, {Vi } is assumed to be a sequence of i.i.d. random variables
and independent of the value process, X. The distribution of V should be unimodal,
symmetric, and bell-shaped in order to conform to the desirable features that the trading
price at a tick closer to the stock value is more likely to occur and trading prices with the
same distance to the stock value have equal probabilities. A good candidate is the doubly
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geometric distribution, whose probability mass function is given by

P{V = v} =
{

(1 − ρ) if v = 0
1
2 (1 − ρ)ρM|v | if v = ± 1

M, ± 2
M, . . . .

.

Then, the transition probability is p(y′ | x) = p(x + v | x) = PV{V = y′ − x}. To be con-
sistent with the tick-by-tick data analyzed in Section 5.4, we set M = 8.

For the clustering noise, the sequence of biasing functions {bi (·)} is assumed to be
independent of the value process X and of the nonclustering noise {Vi }. A biasing function
for the case of M = 8 is constructed next.5

Empirical findings of Harris (1991) show that integers of prices are most likely, halves
are second most likely, odd quarters follow and have roughly the same probabilities, and
odd eighths are least likely and also have roughly the same probabilities. To generate such
clustering, a biasing function is constructed based on the following biasing rules: if the
fractional part of y′ is even eighths, then y stays on y′ with probability 1; if the fractional
part of y′ is an odd eighth, then y stays on y′ with probability 1 − α − β − γ, y moves to
the closest odd quarter with probability α, to the closest half with probability β, and to
the closest integer with probability γ .

To formulate the biasing rule, we define a classifying function r (·) as

r (y) =




3 if the fractional part of y is 1
8 , 3

8 , 5
8 , 7

8

2 if the fractional part of y is 1
4 , 3

4

1 if the fractional part of y is 1
2

0 if y is an integer.

Relying on the simplified notation of Section 2.1, the set of biasing rules specifies the
transition probability of y′ to y, p(y | y′). Define D = 8|y − R [x, 1

8 ]| as the number of
ticks of the difference between the price and the closest tick of the value, where y is a
price level. Note that the nonclustering noise determines p(y′ | x) = P{V = y′ − R [x, 1

8 ]}.
Then the transition probability, p(y | x) can be computed using the formula in equation
(2.2).

For example, when r (y) = 2(y is an odd quarter), two cases emerge:

Case 1. D = 0 results in three subcases: V = 0, V = 1, and V = −1, and

p(y | x) = P{V = 0} + (P{V = 1} + P{V = −1})α = P{V = 0} + 2αP{V = 1}.

Case 2. For D ≥ 1, similar results emerge.

Plugging in the probability mass function of V results in

p(y | x) =




(1 − ρ)(1 + αρ) if r (y) = 2 and D = 0
1
2 (1 − ρ)[ρ + α(2 + ρ2)] if r (y) = 2 and D = 1
1
2 (1 − ρ)ρD−1(ρ + α(1 + ρ2)) if r (y) = 2 and D ≥ 2

.(5.1)

The rest of p(y | x) can be obtained similarly.

5 Although M = 100 is now in the NYSE, the idea of constructing a biasing function is still valid.
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The simplified model is similar to the structural model proposed by Hasbrouck (1996).
It also induces the autocorrelation pattern consistent with extant empirical findings in
financial economics. That is, the first autocorrelation of asset returns is close to zero and
negative for interday data, but is near −0.5 for intraday data; second and higher order
autocorrelations are zero for both data.

For the simplified model, there are six parameters, (µ, σ, ρ, α, β, γ ). The first two relate
to the value process, ρ relates to the nonclustering noise, and the last three relate to the
clustering noise.

The clustering parameters α, β, and γ are estimated by the method of relative fre-
quency, which is a variant of the method of moments. This implies that the rel-
ative frequency estimates are consistent and asymptotically normal. Let fi be the
sample relative frequency for r (y) = i , for i = 0, 1, 2, 3. Assuming that the frac-
tional parts of X are uniformly distributed, the method of relative frequency im-
plies f0 = 1

8 + 1
2γ, f1 = 1

8 + 1
2β, f2 = 1

4 + 1
2α, f3 = 1

2 (1 − α − β − γ ) with the unique
solutions:

α̂ = 2
(

f2 − 1
4

)
, β̂ = 2

(
f1 − 1

8

)
, γ̂ = 2

(
f0 − 1

8

)
.

The parameters µ, σ , and ρ are then estimated by the Bayes estimation via filtering.

5.2. Bayes Estimation for the Simplified Model

In this section, the recursive algorithm for the simplified model is constructed in detail
and the consistency of Bayes estimates is proved.

5.2.1. Recursive Algorithm. The steps in Section 4.2 are followed to construct a re-
cursive algorithm.

For the preparation step, we define �ξ = (µ, σ, ρ) and the parameter space � =
[αµ, βµ] × [ασ , βσ ] × [αρ, βρ ] × [αx, βx]. Because there are no time-depedent parameters,
we only consider (�ξ, X). The filtering equation is still equation (3.3) except the generator
becomes

A f (µ, σ, ρ, x) = 1
2
σ 2x2 ∂2 f

∂x2
(µ, σ, ρ, x) + µx

∂ f
∂x

(µ, σ, ρ, x),(5.2)

and the transition probability pk = p(yk | x) is specified by equation (5.1).
In the second step, we discretize the parameter spaces of µ, σ , ρ and the state space of

X. Suppose there are nµ + 1, nσ + 1, nρ + 1, and nx + 1 lattices in the discretized spaces
of µ, σ, ρ, and X, respectively. For example, the discretization for µ is

µ : [αµ, βµ] → {αµ, αµ + εµ, αµ + 2εµ, . . . , αµ + jεµ, . . . , αµ + nµεµ},
where αµ + nµεµ = βµ and the number of lattices is nµ + 1. Let µ j = αµ + jεµ be the
jth lattice in the discretized parameter space of µ. Similarly, define σk = ασ + kεσ , ρm =
αρ + mερ, and xl = Xl (t) = αx + lεx.

We apply the central difference approximation6 to the differentials in equation (5.2)
to construct the birth and death generator as follows:

6 There exist one-sided difference approximations and central difference approximations and they are
asymptotically identical.
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(5.3)

Aε f (µ j , σk, ρm, xl )

= µ j xl

(
f (µ j , σk, ρm, xl + εx) − f (µ j , σk, ρm, xl − εx)

2εx

)

+ 1
2
σ 2

k x2
l

(
f (µ j , σk, ρm, xl + εx) + f (µ j , σk, ρm, xl − εx) − 2 f (µ j , σk, ρm, xl )

ε2
x

)

= a(µ j , σk, xl )( f (µ j , σk, ρm, xl + εx) − f (µ j , σk, ρm, xl ))

+ b(µ j , σk, xl )( f (µ j , σk, ρm, xl − εx) − f (µ j , σk, ρm, xl )),

where

a(µ j , σk, xl ) = 1
2

(
σ 2

k x2
l

ε2
x

+ µ j xl

εx

)
and b(µ j , σk, xl ) = 1

2

(
σ 2

k x2
l

ε2
x

− µ j xl

εx

)
.

REMARK 5.1. a(µ j , σk, xl ) is the birth rate and b(µ j , σk, xl ) is the death rate7 for the
birth and death process.

In the third step, let the generator Aε be defined as equation (5.3).
In the fourth step, we assume µε = µεµ

, σε = σεσ
, ρε = ρερ

, and Xε = Xεx in the indi-
cator function. Then

I{µε=µ j ,σε=σk,ρε=ρm,Xε (t)=xl }(µε, σε, ρε, Xε(t)) def= I(µ j , σk, ρm, xl ).

The approximate posterior at (µ j , σk, ρm, xl ) is defined as

p(µ j , σk, ρm, xl ; t) = EP[
I(µ j , σk, ρm, xl )

∣∣F �Yε

t
]
.

To determine πε(AεI, t) in equation (4.6), we observe that

EP[
a(µε, σε, Xε(t))I(µ j , σk, ρm, xl + εx)

∣∣F �Yε

t
] = a(µ j , σk, xl−1)p(µ j , σk, ρm, xl−1; t)

and

EP[
b(µε, σε, Xε(t))I(µ j , σk, ρm, xl − εx)

∣∣F �Yε

t
] = b(µ j , σk, xl+1)p(µ j , σk, ρm, xl+1; t).

Then, along with two similar results, πε(AεI, t) in equation (4.6) becomes explicit as

πε(AεI, t) = a(µ j , σk, xl−1)p(µ j , σk, ρm, xl−1; t)

− (a(µ j , σk, xl ) + b(µ j , σk, xl ))p(µ j , σk, ρm, xl ; t)

+ b(µ j , σk, xl+1)p(µ j , σk, ρm, xl+1; t)),

and the recursive equation (4.8) can be written as

p(µ j , σk, ρm, xl ; ti+1−) ≈ p(µ j , σk, ρm, xl ; ti )(5.4)

+ [a(µ j , σk, xl−1)p(µ j , σk, ρm, xl−1; ti )

− (a(µ j , σk, xl ) + b(µ j , σk, xl ))p(µ j , σk, ρm, xl ; ti )

+ b(µ j , σk, xl+1)p(µ j , σk, ρm, xl+1; ti )](ti+1 − ti ).

7 These rates should always be nonnegative. If, for some values of x, µ,and σ in their ranges, one of the
rates becomes negative, then we always make the negative rate positive by making εx small.
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When a trade at the k0th price level, or a jump at Yk0 , occurs at time ti+1, the updating
equation (4.7) turns out to be

p(µ j , σk, ρm, xl ; ti+1) = p(µ j , σk, ρm, xl ; ti+1−)p(yk0 | xl ; ρm)∑
j ′,k′,m′,l ′ p(µ j ′ , σk′ , ρm′ , xl ′ ; ti+1−)p(yk0 | x′

l , ρ
′
m)

,(5.5)

where the summation is over the discretized spaces of µ, σ, ρ and X(ti+1−); and
p(yk0 | xl , ρm) is the transition probability from xl to yk0 , which also depends on ρm.
Then, p(yk0 | xl , ρm) is specified by equation (5.1).

Similarly, equations (5.4) and (5.5) are the recursive algorithm we employ to calculate
the posteriors at time ti+1 for (µ, σ, ρ, X(ti+1)) based on the posteriors at time ti .

Last, we choose a reasonable prior. We assume the independence of X(0) and (µ, σ, ρ),
and set P{X(0) = Y(t1)} = 1, where Y(t1) is the first trade price data. If there is no special
prior information on (µ, σ, ρ) available, it is reasonable to assign uniform distributions
to the discretized state space of µ, σ, ρ. Based on the preceding arguments, we obtain the
prior at t = 0 as

p(µ j , σk, ρm, xl ; 0) =
{ 1

(1+nµ)(1+nσ )(1+nρ ) if xl = Y(t1)

0 otherwise
.

5.2.2. Consistency of the Bayesian Estimates.

THEOREM 5.1. Under the setup of Section 5.1, suppose that the clustering parameters
α, β, γ are known, and (µ, σ, ρ) has a prior. Then E[ f (µ, σ, ρ) |F �Y

t ] → f (µ, σ, ρ) a.s. as
t → ∞ when µ − 1

2σ 2 > 0 for any bounded continuous function f.

Proof: See Appendix B.

REMARK 5.2. The standard condition “µ − 1
2σ 2 > 0” rules out bankruptcy.

Theorem 5.1 together with the convergence of the recursive algorithm implies that the
computed Bayes estimates will converge to their true values. This is confirmed by the
simulation results presented next.

5.3. Simulation Study

Under standard simulation design, it can be shown that the Bayes estimates evaluated
by the recursive algorithm converge to their true values. In order to demonstrate that the
simplified model conforms to the sample characteristics of the real data, a special set of
parameters is selected.

We first describe a one-month (March 1994) transaction data for Microsoft, which
serves as the benchmark for the simulation study. The data are extracted from the Trade
and Quote (TAQ) database distributed by NYSE. To filter the data we apply standard
procedures8 but with one important exception. Previous studies (e.g. Engle and Russell

8 The market is open for trading between 9:30 a.m. to 4:00 p.m. and eligible trades must be time-stamped
within this trading interval. All trades executed outside the regular trading hours are removed. Trades that
are canceled later and wrongly recorded are marked in the TAQ data; these trades are also removed. Late
reported trades, which are transactions that are reported to the tape at a time later than they occurred and
when other trades occurred between the time of the transactions, are also marked in the TAQ data. To be
conservative, these trades are also removed.
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1998) cannot handle multiple trades at a given point in time even though the prices can be
different. Consequently, those trades with zero time duration were excluded. The present
method can handle such cases and therefore we keep all zero duration prices. The final
sample is composed of 32,348 observations.

5.3.1. Micromovement Features of Simulated Data. For simulation, we choose the
parameter values close to estimates from the Microsoft data. Let µ = 4.4 × 10−8, σ =
1.2 × 10−4, ρ = 0.20, α = 0.225, β = 0.066, and γ = 0.3. Since a(t) has no impact in
estimation and noise, we assume the trading intensity is constant: a(t) = 0.06 for all t > 0
(i.e., one trade in about 1/0.06 = 16.67 seconds). Using these parameters, we simulated
32,500 observations.

Figure 5.1 shows the impact of the nonclustering noise and clustering noise on the
distribution of price changes and the impact on the fractional parts of price. Figure 5.1
has four pairs of histograms for these measures. The first three pairs are produced from
the simulated data of the rounding model, the rounding plus nonclustering noise model,
and the simplified model (rounding plus nonclustering and clustering noise). The last pair
is from the actual Microsoft data. The first three histograms in the left column show how
price changes are concentrated on at most one tick, then spread out geometrically on both
sides, and then move toward even eighths, which conforms to the histogram for Microsoft
data. The first three histograms in the right column show that the rounding model and
the rounding plus nonclustering model do not conform to the histogram for Microsoft.
However, adding the clustering noise does produce price clustering phenomenon similar
to the Microsoft histogram.

5.3.2. Bayes Estimates of the Simulated Data. A Fortran program for the recur-
sive algorithm is constructed to calculate, at each trading time ti , the joint posterior
of (µ, σ, ρ, X), their marginal posteriors, their Bayes estimates, and their standard errors,
respectively.

Figure 5.2 has three plots that show how the Bayesian estimates and their two-standard-
errors (SE) bounds evolve in comparison with the true values for µ, σ , and ρ respectively.
The figure clearly shows that the estimates of µ and σ converge to their true values, the
two-SE bounds shrink, and the true values are within the two-SE bounds. Also, the true
value of ρ is always within the three-SE bounds. Similarly, the Bayes estimates of X(t)
are close to their true values, which are always within the two-SE bounds.

The final posteriors of µ, σ , and ρ are presented in Table 5.1. Note that the lattices do
not include the true values in order to ensure a fair comparison. The true values, final
Bayes estimates, and their standard errors are listed below the table. The Bayes estimates
are close to the true values, which are within three SE. The SE of µ is much larger than
the SEs of σ and ρ (comparing to the Bayes estimates). This makes sense because µ is a
trend parameter, and its estimation accuracy depends on the length of time covered by
the data (23 days), but the accuracy of σ and ρ estimates mainly depends on the number
of observations (32,500).

5.4. An Application to Real Data

In this section, the recursive algorithm is applied to the Microsoft data to obtain the
Bayes estimates, to show the algorithm is fast enough to provide real-time estimates, and
to present a straightforward financial application of the simplified model.
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FIGURE 5.1. The impact of nonclustering and clustering noise on the distribution of
price changes and on the fractional parts of prices.
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FIGURE 5.2. Bayesian estimates of µ, σ , and ρ and the two-standard-errors bounds.
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TABLE 5.1
Final Posteriors of µ, σ , and ρ

µ p(µ) σ p(σ ) ρ p(ρ)

−2.0e−7 0.0481 1.110e−4 3.804e−13 0.186 2.105e−10
−1.0e−7 0.1187 1.135e−4 5.646e−8 0.190 4.638e−7
0.0 0.2041 1.160e−4 2.825e−4 0.194 1.844e−4
1.0e−7 0.2446 1.185e−4 0.0586 0.198 0.0135
2.0e−7 0.2041 1.210e−4 0.5861 0.202 0.1878
3.0e−7 0.1186 1.235e−4 0.3420 0.206 0.5043
4.0e−7 0.0481 1.260e−4 0.0134 0.210 0.2661
5.0e−7 0.0136 1.285e−4 4.108e−5 0.214 0.0280

True µ = 4.40e−8, E(µ) = 1.054e−7, and SE(µ) = 1.561e−7.
True σ = 1.20e−4, E(σ ) = 1.218e−4, and SE(σ ) = 1.498e−6.
True ρ = 0.20, E(ρ) = 0.2064, and SE(ρ) = 0.0031.

Based on the relative frequencies of the fractional parts of the price for Microsoft,
we estimate α = .224, β = .066, and γ = .31. The empirical distribution of trade waiting
times does not support a pure exponential distribution for duration, but does support a
mixed exponential distribution, which is consistent with the simplified model. The mean
duration is 16.64 seconds with a standard error of 28.08 seconds.

Now, the Fortran program is applied to the transaction data of Microsoft. It takes
about three hours to obtain the Bayes estimates for each trade in the whole data set on
a Compaq XP1000 Alpha computer. This running time is much less than the real-time
estimates required.9 Only the final Bayes estimates are presented.

5.4.1. Bayes Estimates for Microsoft Data. As a comparison, we first look at the
MLE of GBM for daily closing data. There were 23 daily closing data for March 1994.
Assuming 260 business days per year, the annualized results are summarized as item 1 in
Table 5.2. The annualized Bayes estimates based on the transaction data are presented
as item 2 in Table 5.2.

These two estimates are comparable. The Bayes estimates are more accurate because
the model is closer to the real data and much more information is used. Note that the
standard errors of the Bayesian estimates are smaller than those of MLEs, as expected.

5.4.2. Does Price Clustering Matter?. Price discreteness and clustering are two strik-
ing features of micromovement prices. Hausman, Lo, and Mackinlay (1992) asked
whether price discreteness matters for the parameter estimation, and they provided a
strong affirmative answer.

It is equally important to ask whether the related price clustering matters, and our
simple analysis supplies strong evidence in the affirmative. When clustering noise is ig-
nored, the variability due to clustering noise moves to σ and ρ. If the estimates of σ

and ρ increase, supportive evidence is provided on the importance of price clustering.

9 23 days × 6.5 hours per day = 149.5 hours, the total time required for real-time estimates.
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TABLE 5.2
Annualized MLE and Bayes Estimates for MSFT, 94/3

Model µ σ ρ

1. MLE of daily closing prices 35.12% 26.49% na
(140.40%) (6.24%) na

2. Bayes estimates of transaction prices 26.53% 28.09% 0.211
with clustering (46.25%) (0.42%) (.0024)

3. Bayes estimates of transaction prices 26.40% 31.42% 0.319
without clustering (46.73%) (0.46%) (0.0032)

Standard errors are in parenthesess.

Ignoring price clustering is equivalent to setting α = β = γ = 0. Then, µ, σ , and ρ are
estimated. The Bayes estimates are presented as item 3 in Table 5.2. The Bayes estimate of
µ differs little, but the estimates of σ and ρ have increased significantly. This increase in
parameter values provides strong evidence that ignoring the existence of price clustering
can significantly bias the statistical inference.

6. CONCLUSION

A partially observed micromovement model for asset prices is proposed. The model
ties the sample characteristics of micromovement and macromovement in a consistent
manner. It can be applied to a variety of asset prices, including stocks prices, exchange
rates and commodity prices. The proposed model is purely statistical, though the price
process it generates is fully consistent with many behavioral models (for an excellent
survey, see O’Hara 1995). The model is a marked point process, which is so general that it
includes many structurally different models.10 Engle (2000) also proposed a marked point
process to model micromovement of stock prices. Unlike Engle, the model proposed in
this paper is partially observed and complete information of prices and trading times is
utilized for parameter estimation.

The main appeal of the proposed model is that the transactional price process can
be framed as a filtering problem with counting process observations. Under this frame-
work, complete information can be used for parameter estimation. We introduced Bayes
estimation via filtering for the parameters as well as the underlying value process. The
core of Bayes estimation via filtering is to construct a consistent recursive algorithm. The
algorithm can compute the Bayes estimates for time-invariant as well as time-dependent
parameters. To illustrate the mechanics of implementing the proposed model, a simplified
version of the model was studied in detail.

This paper opens up at least five directions for future research: model exten-
sion, model selection, computation, option pricing, and deeper studies in market
microstructure.

10 Such as the autoregressive conditional duration model by Engle and Russell (1998), the autoregressive
conditional multinomial model by Russell and Engle (1998), the threshold autoregressive conditional du-
ration model by Zhang, Russell, and R. S. Tsay (2000), the univariate activity, direction and size model by
Rydberg and Shephard (1998), and the stochastic-intensity point process by Rogers and Zane (1998).
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The simplified model can be extended in several ways to improve the empirical ap-
plications. First, the value process can be generalized to stochastic volatility and jump-
diffusion models. Second, the clustering and nonclustering noises can assume other forms
or distributions to accommodate different tick sizes and different sample characteristics.
Third, the trading intensity a(t) can be generalized to a(θ (t), X(t), t). Furthermore, the
model itself can be extended to a multivariate setting, and to include other observable
variables such as ask and bid quotes and trading volume. Some of these extensions are
currently being investigated by the author.

Model selection is a significant and persistent area of research as many competing
models can be fitted to intraday price data. Based on the Bayes factor, a Bayesian approach
provides a methodology for hypothesis testing and model selection that accommodates
irregular likelihood functions such as those under the general framework of this paper.
The Bayesian model selection method provides a powerful tool for testing economic
hypothesis related to market microstructure theory. Some of these issues are also being
pursued by the author.

The recursive algorithm suffers from the “curse of dimensionality” as the simplified
model is extended. It is worthwhile to develop new computing algorithms to improve
efficiency.

The proposed model describes trade-by-trade price behavior and can provide trade-
by-trade Bayes parameter estimates. Both of these supply the potential to develop a
practically important trade-by-trade option pricing formula and trade-by-trade hedge
portfolio under our framework, which incorporates transitory noise.11

There are other direct applications of the proposed model. For example, one can
study the estimation bias induced by trading noises as in Gottlieb and Kalay (1985),
Cho and Frees (1988), and Ball (1988), compare the Bayes estimates with other simpler
approaches such as the discrete-time state-space model of Kitagawa (1987), assess the
quality of security market as in Hasbrouck (1993), compare information flows in trading
and nontrading periods and compare noise in call and auction markets as in Forster and
George (1995) and George and Hwang (1998).

APPENDIX A

Proof of Theorem 3.1. There are two basic approaches to derive filtering equation: filtering
via innovation and filtering via reference measure (see the classic book, Kallianpur 1980).
We adopt the latter here. There are three steps in the proof.

Step 1. Determine the SDE for φ( f, t).
We start with integration by parts (see Protter 1992, p. 60):

U(t)V(t) = U(0)V(0) +
∫ t

0
U(s−) dV(s) +

∫ t

0
V(s−) dU(s) + [U, V]t

and take U(t) = f (θ (t), X(t)), V(t) = L(t). Assumption 2.3 implies f (θ (t), X(t)) and L(t)
have no simultaneous jumps w.p.1, which implies [ f (θ, X), L]t = 0. Coupled with the
fact that [

∫
A f (θ (s), X(s)) ds, L]t = 0, it implies [Mf , L]t = 0. Then the Girsanov-Meyer

11 Bertsimas, Kogan, and Lo (2000) studied the discrete-time approximate error in option pricing, but they
did not include transitory noise.
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Theorem (see Protter 1992, p. 109) implies that Mf (t) is also a martingale under Q. Then

(A.1)

f (θ (t), X(t))L(t) = f (θ (0), X(0))L(0) +
∫ t

0
L(s−) d Mf (s)

+
n∑

k=1

∫ t

0
f (θ (s−), X(s−))[λk(θ (s−), X(s−), s−) − 1]L(s−) dYk(s)

+
∫ t

0
L(s)

{
A f (θ (s), X(s)) −

n∑
k=1

∫ t

0
f (θ (s),

X(s))[λk(θ (s), X(s), s) − 1]

}
ds.

We take conditional expectations with respect to the reference measure Q given the ob-
served history of F �Y

t on both sides of equation (A.1). We state four lemmas that deal with
the four terms on the right-hand side of equation (A.1). The proofs of these lemmas are
available upon request.

LEMMA A.1. Suppose that X has finite expectation and is H-measurable, and that D is
independent of H ∨ G. Then, E[X |G ∨ D] = E[X |G].

Let D = F �Y
0<s≤t, which is independent of G = F �Y

0 and H = F θ,X, �Y
0 . Then Lemma A.1

implies EQ[ f (θ (0), X(0))L(0) |F �Y
t ] = EQ[ f (θ (0), X(0))L(0) |F �Y

0 ] = φ( f, 0).

LEMMA A.2. Suppose �X and �Y are independent. Let M(t) be a martingale with re-
spect to {F �X

t } and let U be (F �X ∨ F �Y)t-predictable. If E[|∫ t
0 U(s) dM(s)|] < ∞. Then

E[
∫ t

0 U(s) dM(s) |F �Y
t ] = 0.

Under the reference measure Q, (θ, X) and �Y are independent and Mf (t) is still a F θ,X
t -

martingale. U(t) = L(t) is (F θ,X ∨ FY)t-predictable and Assumption 2.5 ensures that L(t)
is uniformly bounded. Since Mf (t) is bounded for every t, EQ[| ∫ t

0 L(s−) d Mf (s)|] < ∞.

Therefore, Lemma A.2 implies EQ[
∫ t

0 L(s−) dM f (s) |F �Y
t ] = 0.

LEMMA A.3. Suppose that �Y = (Y1, Y2, . . . , Yn) and �X, Y1, Y2, . . . , Yn are indepen-
dent. U is (F �X ∨ F �Y)t-predictable. Suppose that Yk is a unit Poisson process and
E[

∫ t
0 | U(s) | ds] < ∞. Then,

E

[ ∫ t

0
U(s−) dYk(s)

∣∣F �Y
t

]
=

∫ t

0
E

[
U(s−) |F �Y

s−
]

dY k(s).

Under Q, similarly, the conditions of Lemma A.3 are satisfied. Then

EQ

[ ∫ t

0
f (θ (s−), X(s−))[λk(θ (s−), X(s−), s) − 1]L(s−) dYk(s)

∣∣F �Y
t

]

=
∫ t

0
φ((λk − 1) f, s−) dY k(s).
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LEMMA A.4. Suppose that �X and �Y are independent. If U is (F �X ∨ F �Y)t-adapted,
satisfying

∫ t
0 E[ | U(s) | ] ds < ∞ , then

EQ

[ ∫ t

0
U(s) ds |F �Y

t

]
=

∫ t

0
EQ[

U(s) |F �Y
s

]
ds.

Lemma A.4 implies

EQ

[∫ t

0
L(s)

{
A f (θ (s), X(s)) −

n∑
k=1

∫ t

0
f (θ (s), X(s))[λk(θ (s), X(s), s) − 1]

}
ds |F �Y

t

]

=
∫ t

0
φ

(
A f −

n∑
k=1

(λk − 1) f, s

)
ds =

∫ t

0
φ(A f − (a − n) f, s) ds.

Summarizing the above, we have the SDE for φ( f, t), which is equation (3.1).

Step 2. Determine the SDE for π ( f, t).

Note π ( f, t) = φ( f,t)
φ(1,t) . Apply Itô’s formula (see Protter 1992, p. 74) to f (X, Y) = X

Y with
X = φ( f, t) and Y = φ(1, t). After some simplifications we have

(A.2)

π ( f, t) = π ( f, 0) +
∫ t

0

[
π (A f, s) −

n∑
k=1

π ( f λk, s) + π ( f, s)
n∑

k=1

π (λk, s)

]
ds

+
n∑

k=1

∫ t

0
(π ( f, s) − π ( f, s−)) dY k(s).

A last step remains to make the integrand of the last integral predictable. Assume a
trade at Yk occurs. Then

π ( f, s) = φ( f, s)
φ(1, s)

= φ( f, s−) + φ( f (λk − 1), s−)
φ(1, s−) + φ(λk − 1, s−)

= φ( f λk, s−)
φ(λk, s−)

= π ( f apk, s−)
π (apk, s−)

.

Hence, equation (A.2) implies equation (3.2).
When a(θ (t), X(t), t) = a(t), two additional observations further simplify equa-

tion (3.2) to equation (3.3). First, π ( f a, t) = a(t)π ( f, t), and π (a, t) = a(t). Then, the two
terms in the integrand of ds in equation (3.2) cancel out. Second, π( f apk,s−)

π(apk,s−) = π( f pk,s−)
π(pk,s−) .

Step 3. Prove the Uniqueness.

We follow Kliemann Koch, and Marchetti (1990). They formulate the problem as a
filtered martingale problem (FMP) proposed by Kurtz and Ocone (1988) and then ap-
ply Kurtz and Ocone’s result about the unique solution for the FMP. For our case,
Assumption 2.5 ensures the existence of a measure, under which the �Y are counting
processes with intensities π (λk, t) for k = 1, 2 , . . . , n and the FMP can be defined.
Then, the uniqueness of FMP gives the uniqueness of the filtering equations. We re-
fer the interested reader to Kliemann et al. and Kurtz and Ocone for details of the
proof. �
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APPENDIX B

Proof of Theorem 5.1: Set �ξ = (µ, σ, ρ)′. We know E[ f (�ξ ) |F �Y
t ] is a martingale converging

to E[ f (�ξ ) |F �Y
∞] a.s. If we can show that �ξ is F �Y

∞-measurable, then E[ f (�ξ ) |F �Y
∞] = f (�ξ )

and the consistency follows.

To show that �ξ is F �Y
∞-measurable, it suffices to construct a.s. consistent estimates of

µ, σ , and ρ based on F �Y
∞.

First, we construct a consistent estimate for µ − 1
2σ 2. It is simple to check that

1
t (log Yt − log Y0) → µ − 1

2σ 2 a.s. as t → ∞. Then, 1
t [log Y(t) − log Y(0)] is an a.s. con-

sistent estimate for µ − 1
2σ 2.

Next, we construct an a.s. consistent estimate for σ 2. Required terms are defined prior
to Lemma B.1. First, we define a sequence of stopping times {τi } for each n > 0. Define
τ1 = t1, which is the first trading time. Then recursively define τi+1 = inf j {tj , tj > τi + n},
which is the first trading time after τi + n.

Second, for any K > 1.5, we define the “simplified-K” model, which is the simplified
model described in Section 6.1 except that the nonclustering noise V is replaced by a
truncated version Ṽ, defined as

Ṽi =
{

Vi if Vi ≥ −K + 1
−K + 1 if Vi < −K + 1

.

We focus on constructing an a.s. consistent estimate of σ 2 for the simplified-K model,
because the truncation makes the following inequality work for the case when a = Y(τi,1)
and b = X(τi,1). The inequality is when a > 1 and b > 1, | log(a) − log(b) | ≤ | a − b | ,
which is used in proving Lemma B.1.

Third, based on {τi } and for any K > 1.5, we define a sequence of paired stopping times
{(τ K

i,1, τ
K
i,2)} as follows. The first pair (τ1,1, τ1,2) is the first pair in {τi } that satisfies three

conditions: (i) τ1,1 and τ1,2 are consecutive in {τi }, (ii) τ1,1 < τ1,2, and (iii) Y(τ1,1) ≥ K
and Y(τ1,2) ≥ K . Then, recursively define the (i + 1)th pair (τi+1,1, τi+1,2) in {τi } as the
first pair after τi,1 (note that τi+1,1 can be τi,2) that satisfies the similar three conditions:
(i) τi+1,1 and τi+1,2 are consecutive in {τi }, (ii) τi+1,1 < τi+1,2, and (iii) Y(τi+1,1) ≥ K and
Y(τi+1,2) ≥ K .

Since µ − 1
2σ 2 > 0, we can always have such a sequence of paired stopping times for

any n > 0 and K > 1.5.
Fourth, for each positive integer n and K > 1.5, we define

DK
i,n = log

(
Y

(
τ K

i,2

)) − log
(
Y

(
τ K

i,1

))
√

n

for i = 1, 2, . . . , n.

Finally, define

σ̂ 2
n,K = 1

n

n∑
i=1

(
DK

i,n − D̄K
n

)2
,

where D̄K
n = 1

n

∑n
i=1 DK

i,n .

LEMMA B.1. For K > 1.5, σ̂ 2
n,K → σ 2 a.s. as n → ∞.

The proof is available upon request.
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Then, letting K → ∞, we have σ̂ 2
n,K as the a.s. consistent estimate of σ 2.

To construct a consistent estimate for ρ, we choose two consecutive trades Y(ti−1) and
Y(ti ) such that both fractional parts of prices are odd eighths and ti − ti−1 < δ. For any
small δ > 0, we can always obtain infinitely many such pairs of consecutive trades as
t → ∞, because the probability that two trades occur within the time span of δ is strictly
positive given C1 < a(t).

Note that when Y(ti ) is an odd eighth, then Y(ti ) = R [X(ti ), 1
M] + Vi . When ti+1 − ti < δ

and as δ goes to zero, R [X(ti+1), 1
M] = R [X(ti ), 1

M]. So, when δ is very small, Y(ti+1) −
Y(ti ) = Vi+1 − Vi . And when both Y(ti+1) and Y(ti ) are odd eighths, Y(ti+1) − Y(ti ) must
be an even eighth.

In such an i.i.d. sequence of {Y(ti ) − Y(ti−1)}, we can observe the empirical relative
frequency that Y(ti ) − Y(ti−1) = 0 for a fixed time span t, which is denoted by f0,t.

We compute

P{Vi − Vi−1 = 0 | Vi − Vi−1 = 2k, k = 0, ±1, ±2, · · ·} = (2 − ρ2)(1 − ρ2)
2(1 + ρ2)

.

Set (2 − ρ2)(1 − ρ2)/[2(1 + ρ2)] = f0,t.
It is simple to check that the above equation has only one root between [0, 1]. This root

is an estimate of method of relative frequency. The strong consistency of the estimates of
method of relative frequency is well known (Serfling 1980). �
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