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Weak convergence for a type of conditional
expectation: application to the inference for a class

of asset price models�

Michael A. Kouritzina, Yong Zengb,∗
aDepartment of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Al, Canada T6G 2G1

bDepartment of Mathematics and Statistics, University of Missouri at Kansas City, Kansas City, MO 64110, USA

Received 12 March 2004; accepted 1 July 2004

Abstract

We prove weak convergence of a type of conditional expectation, which provides a straightforward
proof of Goggin’s Theorem and further proves the consistency of (integrated) likelihood, posterior,
and Bayes factor for a class of transactional asset price models recently developed.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The weak convergence of(XN, YN) on a probability space(�N,FN, PN) to (X, Y )
on (�,F, P ) does not necessarily imply thatEP

N [F(XN) |YN ] ⇒ E[F(X) |Y ], even
for bounded, continuous functions,F. However, Goggin[2] showed that the limit of the
conditional expectations can be determined if it is possible to make an absolutely contin-
uous change of probability measure, fromPN to QN with LN(XN, YN) = dPN/dQN

being the Radon–Nikodym derivative, so thatXN andYN are independent underQN . Gog-
gin’s main condition guaranteeing the weak convergence of the conditional expectation is
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that (XN, YN,LN(XN, YN)) underQN converges in distribution to(X, Y, L(X, Y )) un-
derQ. Under the same conditions of Goggin[2], we provide a short proof of the weak
convergence of this type of conditional expectation:EQ

N [F(XN)LN(XN, YN) |YN ] ⇒
EQ[F(X)L(X, Y ) |Y ] asN → ∞, establishing Goggin’s theorem. We note that Crimaldi
and Pratelli in[7] at about the same time independently proved a similar result.

We note thatEQ[F(X)L(X, Y ) |Y ] for suitably chosenF solves the Duncan–Mortensen–
Zakai (unnormalized filtering) equation in the classical filtering problem. Hence, weak
convergence of this type of conditional expectation can be used in proving the consistency
of some numerical algorithms for computing Duncan–Mortensen–Zakai equation. However,
this paper focuses on another important application to the statistical inference for a class of
partially observed models of asset price for transaction data recently proposed in[6]. The
main appeal of the class of models is that they are framed as a filtering problem with counting
process observations.Then,EQ[F(X)L(X, Y ) |Y ] relates to the continuous-time likelihood
(or integrated likelihood in Bayesian statistics) of the model, which is specified by the
unnormalized filtering equation. The Markov chain approximation method can be applied
to develop recursive algorithms based on the unnormalized filtering equation to compute
the continuous-time likelihood. Therefore, weak convergence of this type of conditional
expectation is useful in proving the consistency of the recursive algorithms for likelihoods.
Furthermore, together with the continuous mapping theorem, weak convergence of this type
of conditional expectation can also prove the consistency of the recursive algorithms for
computing posterior and Bayes factor, which is the ratio of the integrated likelihoods of the
two models considered in model selection.

Section 2 presents and proves the main theorem with two corollaries. The first corollary
is Goggin’s theorem and is related to the consistency of posterior. The second relates to
the consistency of Bayes factor. It should be noted that the results in Section 2 are fairly
general, because they are for the random variables in the complete, separable metric spaces.
To present an application, Section 3 first reviews the class of models proposed in[6], then
proves the consistencies of the likelihoods, posterior and Bayes factor.

2. The main result

Theorem 1. Suppose that S1 and S2 are complete, separable metric spaces and that(XN,
YN), N = 1,2, . . . , and (X, Y ) are S1 × S2-valued random variables defined on the
probability spaces(�N,FN, PN) and(�,F, P ), respectively. Suppose that{(XN, YN)}
converges in distribution to(X, Y ), that PN>QN on �(XN, YN) with dPN/dQN =
LN(XN, YN), and thatQN (Q) is a probability measure onFN (F) such thatXN , YN

(X, Y ) are independent underQN (Q).
Suppose that theQN -distribution of(XN, YN,LN(XN, YN)) converges weakly to the

Q-distribution of(X, Y, L(X, Y )), whereEQ[L(X, Y )] = 1.Then, the following hold:

(i) P>Q on�(X, Y ) anddP/dQ= L(X, Y );

(ii) for every bounded continuous functionF : S1 → R, EQ
N [F(XN)LN(XN, YN) |YN ]

converges weakly toEQ[F(X)L(X, Y ) |Y ] asN → ∞.
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Proof. Part (i) is from part (i) of Theorem 2.1 in[2]. The following is the proof for part (ii).
Pick�>0. Then, as in[2], there exists a bounded, continuous functionL�, w.l.o.g. strictly

positive, such thatEQ[|L(X, Y )− L�(X, Y )|]< �.
Let ZN = LN(XN, YN) andZ = L(X, Y ). Using Skorohod’s representation, we can

find a probability space(�̂, F̂, Q̂) where(X̂N , Ŷ N , ẐN) and(X̂, Ŷ , Ẑ) are defined with
the following three properties: for eachN, (X̂N , Ŷ N , ẐN) has the same distribution as
(XN, YN,LN(XN, YN))underQN ; (X̂, Ŷ , Ẑ)has the same distribution as(X, Y, L(X, Y ))
underQ; and(X̂N , Ŷ N , ẐN) → (X̂, Ŷ , Ẑ)Q̂-a.s. Suppose|F |�C. We observe that

EQ̂
[
|EQ̂

[
F(X̂N)ẐN |Ŷ N

]
− EQ̂

[
F(X̂)Ẑ|Ŷ

]
|
]

�CEQ̂
[
|Ẑ − L�(X̂, Ŷ )|

]
+ CEQ̂

[
|ẐN − L�(X̂N , Ŷ N )|

]
+ EQ̂

[
|EQ̂

[
F(X̂N)L�(X̂N , Ŷ N )|Ŷ N

]
− EQ̂

[
F(X̂)L�(X̂, Ŷ )|Ŷ

]
|
]
. (1)

Now, it suffices to prove the right-hand side of the above inequality can be arbitrary small
for large enoughN. Thefirst termis less thanC�. For the second term, we observe

EQ̂
[
|L�(X̂N , Ŷ N )− ẐN |

]
�EQ̂

[
|L�(X̂N , Ŷ N )− L�(X̂, Ŷ )|

]
+ EQ̂

[
|L�(X̂, Ŷ )− Ẑ|

]
+ EQ̂

[
|Ẑ − ẐN |

]
.

Since(X̂N , Ŷ N ) → (X̂, Ŷ ) (Q̂-a.s., andL� is bounded and continuous, the first expectation
is less than� for largeN. The second expectation is less than� by the assumption onL�.
SinceẐN → Ẑ Q̂-a.s., and

∫
ẐN dQ̂ → ∫

Ẑ dQ̂ (since all the integrals are identically 1),
the last expectation is less than� for largeN. Therefore, thesecond termof (1) is less than
3C�.

Noting that bothF and L� are bounded and continuous real variables, one finds
that the mapping:(y,�) → ∫

F(x)L�(x, y)�(dx) is continuous. Therefore, noting that
(Ŷ N ,�N)→ (Ŷ ,�), where�N = Q̂−1(X̂N) and�= Q̂−1(X̂), we obtain that thethird term
of (1) is less than� for largeN. �

Theorem 1 relates to the consistency of likelihood in the application of Section 3. The
following corollary is Goggin Theorem and relates to the consistency of posterior in the
application of Section 3. We use the notation,XN ⇒ X (X� ⇒ X), to meanXN (X�)
converges weakly toX in the Skorohod topology asN → ∞ (� → 0).

Corollary 1. Under the same conditions of Theorem1 and the assumption thatQ{EQ[L
(X, Y ) |Y ] = 0} = 0, for every bounded continuous functionF : S1 → R, we have:
EP

N [F(XN) |YN ] converges weakly toEP [F(X) |Y ] asN → ∞.

Proof. Bayes theorem, Theorem 1 and continuous mapping theorem imply that

EP
N [F(XN) |YN ] = EQ

N [F(XN)LN(XN, YN) |YN ]
EQ

N [LN(XN, YN) |YN ] ⇒ EQ[F(X)L(X, Y ) |Y ]
EQ[L(X, Y ) |Y ]

=EP [F(X) |Y ]. �
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Corollary 2 relates to the consistency of Bayes factor in the application of Section 3.

Corollary 2. Suppose that fork=1,2,S(k)1 andS(k)2 are complete,separablemetric spaces,
and that(XNk , Y

N
k ) ((Xk, Yk)) on (�

N
k ,F

N
k , P

N
k ) ((�k,Fk, Pk)) satisfies the same con-

ditions of Theorem1.Suppose thatQk{EQk [Lk(Xk, Yk) |Yk] = 0} = 0 for k = 1,2.Define

qN1 (F1)= EQ
N
1 [F1(X

N
1 )L

N
1 (X

N
1 , Y

N
1 ) |YN1 ]

EQ
N
2 [LN2 (XN2 , YN2 ) |YN2 ]

and

qN2 (F2)= EQ
N
2 [F2(X

N
2 )L

N
2 (X

N
2 , Y

N
2 ) |YN2 ]

EQ
N
1 [LN1 (XN1 , YN1 ) |YN1 ]

.

Defineq1(F1) and q2(F2) similarly. Then, for every bounded continuous functionFk :
S
(k)
1 → R, (qN1 (F1), q

N
2 (F2)) converges weakly to(q1(F1), q2(F2)).

Proof. By the proof of Theorem 1,
(
EQ

N
1
[
F1(X

N
1 )L

N
1 (X

N
1 , Y

N
1 ) |YN1

]
, EQ

N
2
[
F2(X

N
2 )L

N
2

(XN2 , Y
N
2 ) |YN2

]) ⇒ (
EQ1

[
F1(X1)L1(X1, Y1) |Y1

]
, EQ2

[
F2(X2)L2(X2, Y2) |Y2

])
, and

the continuous mapping theorem implies that

[
qN1 (F1)

qN2 (F2)

]
=



E
QN1 [F1(X

N
1 )L

N
1 (X

N
1 ,Y

N
1 ) | YN1 ]

E
QN2 [LN2 (XN2 ,YN2 ) | YN2 ]

E
QN2 [F2(X

N
2 )L

N
2 (X

N
2 ,Y

N
2 ) | YN2 ]

E
QN1 [LN1 (XN1 ,YN1 ) | YN1 ]


 ⇒


 EQ1[F1(X1)L1(X1,Y1) | Y1]

EQ2[L2(X2,Y2) | Y2]
EQ2[F2(X2)L2(X2,Y2) | Y2]

EQ1[L1(X1,Y1) | Y1]




=
[
q1(F1)

q2(F2)

]
. �

3. Application to a class of asset price models

In this section, we first review the class of partially-observed models for transactional
asset price in[6] and their continuous-time likelihoods, posterior and Bayes factors. Then,
we apply the theorem and the two corollaries in Section 2 to prove the consistency of the
likelihoods, posterior and Bayes factors.

3.1. The class of models

In trade-by-trade level, the asset price does not move continuously as the common asset
price models such as geometric Brownian motion or jump-diffusion processes suggest,
but move level-by-level due to price discreteness. When we view the prices according to
price level, we model the prices of an asset as a collection of counting processes in the
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following form:

�Y (t)=



N1(

∫ t
0 �1(�(s),X(s), s)ds)

N2(
∫ t

0 �2(�(s),X(s), s)ds)
...

Nn(
∫ t

0 �n(�(s),X(s), s)ds)


 , (2)

whereYj (t)=Nj(
∫ t

0 �j (�(s),X(s), s)ds) is the counting process recording the cumulative
number of trades that have occurred at thejth price level (denoted byyj ) up to timet.
Moreover,�(t) is a vector of parameters in the model andX(t) is the intrinsic value process,
which cannot be observed directly, but can be partially observed through�Y . Suppose that
P is the probability measure of(�, X, �Y ). We invoke five mild assumptions on the model.

Assumption 1. {Nj }nj=1 are unit Poisson processes under measureP.

Assumption 2. (�, X),N1, N2, . . . , Nn are independent under measure P.

Assumption 3. The total intensity process,a(�, x, t), is uniformly bounded above, namely,
there exists a positive constant,C, such that 0<a(�, x, t)�C for all t >0 and all(�, x).

Remark 1. Assumption 3 is for technical reasons. These three assumptions imply that
there exists a reference measureQ and that after a suitable change of measure toQ,
(�, X), Y1, . . . , Yn become independent, andY1, Y2, . . . , Yn become unit Poisson processes.
Also, the independence in Assumption 2 implies the probability to have any simultaneous
jumps is zero.

Assumption 4. The intensity,�j (�, x, t) = a(�, x, t)p(yj | x), where a(�, x, t) is the
total trading intensity at timet andp(yj | x) is the transition probability fromx to yj ,
the jth price level.

Remark 2. This assumption imposes a desirable structure for the intensities of the model.
It means that the total trading intensitya(�(t), X(t), t) determines the overall rate of trade
occurrence at timet andp(yj | x) determines the proportional intensity of trade at the price
level,yj , when the value isx. Note thatp(yj | x) models how the trading noise enters the
price process.

Assumption 5. (�, X) is the unique cadlag solution of a martingale problem for a generator
A such that

Mf (t)= f (�(t), X(t))−
∫ t

0
Af (�(s),X(s))ds

is aF�,X
t -martingale forf ∈ D(A), whereF�,X

t is the�-algebra generated by(�(s),
X(s))0� s� t .
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Remark 3. The martingale problem and the generator approach (see[1]) provide a pow-
erful tool for the characterization of Markov processes. Assumption 5 includes all relevant
stochastic processes such as diffusion and jump-diffusion processes.

Remark 4. Under this representation,(�(t), X(t)) becomes the signal process, which can-
not be observed directly, but can be partially observed through the counting processes,
�Y (t), corrupted by trading noise, which is modeled byp(yj | x) (see[6] for more about
trading noise). Hence,(�, X, �Y ) is framed as afiltering problem with counting process
observations.

3.2. Foundations of statistical inference

3.2.1. The continuous-time joint likelihood
The probability measureP of (�, X, �Y ) can be written asP = P�,x × Py | �,x , where

P�,x is the probability measure for(�, X) such thatMf (t) in Assumption 5 is aF�,X
t -

martingale, andPy | �,x is the conditional probability measure for�Y given (�, X). Un-
der P, �Y depends on(�, X). Recall from Remark 1 that there exists a reference mea-
sureQ such that underQ, (�, X) and �Y become independent, andY1, Y2, . . . , Yn become
unit Poisson processes. Therefore,Q can be decomposed asQ = P�,x × Qy , whereQy

is the product probability measure forn independent unit Poisson processes. Then, the
Radon–Nikodym derivative of the model,L(t), that is thecontinuous-time joint likelihood
of (�, X, �Y ), is,

L(t)= dP

dQ
(t)= dP�,x

dP�,x
(t)× dPy | �,x

dQy

(t)= dPy | �,x
dQy

(t)

=
n∏
k=1

exp

{∫ t

0
log �k(�(s−),X(s−), s−)dYk(s)

−
∫ t

0
[�k(�(s),X(s), s)− 1] ds

}
. (3)

3.2.2. The continuous-time likelihoods of�Y
However,X cannot be observed. To obtain the integrated likelihood of the model, which

is the marginal likelihood of�Y , we may integrateL(t) on (�, X), or equivalently, write the

integrated likelihood in terms of conditional expectation. LetF
�Y
t =�{( �Y (s)) | 0�s� t} be

the available information up to timet.

Definition 1. Let �(f, t)= EQ[f (�(t), X(t))L(t) |F �Y
t ].

If (�(0),X(0)) is fixed, then the likelihood ofY is EQ[L(t) |F �Y ] = �(1, t). If a prior
is assumed on(�(0),X(0)), then theintegrated (or marginal) likelihood of Y is also
�(1, t).
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3.2.3. The continuous-time posterior

Definition 2. Let �t be the conditional distribution of(�(t), X(t)) givenF
�Y
t .

Definition 3. �(f, t)= EP [f (�(t), X(t)) |F �Y
t ] = ∫

f (�, x)�t (d�,dx).

If a prior is assumed on(�(0),X(0)), then�t becomes the continuous-time posterior,
which is determined by�(f, t) for all continuous and boundedf.

3.2.4. Continuous-time Bayes factors
For the class of micromovement models, we suppose that Modelk is denoted by(�(k), X(k),

�Y (k)) for k=1,2. Denote the joint likelihood of(�(k), X(k), �Y (k)) byL(k)(t), which is given

by Eq. (3). Denote�k(fk, t)= EQ
(k)[fk(�(k)(t), X(k)(t))L(k)(t) |F �Y (k)

t ]. Then, the inte-
grated likelihood of�Y is �k(1, t), for Modelk.

In general, the Bayes factor of Model 2 over Model 1,B21, is defined as the ratio of
integrated likelihoods of Model 2 over Model 1, i.e.B21(t) = �2(1, t)/�1(1, t). Suppose
B21 has been calculated. Then, we can interpret it using the table furnished by Kass and
Raftery[3] (a survey paper of Bayes factor) as guideline.

Similarly, we can defineB12. Obviously,B12 × B21 = 1.

Definition 4. Define the filter ratio processes:

q1(f1, t)= �1(f1, t)

�2(1, t)
, and q2(f2, t)= �2(f2, t)

�1(1, t)
.

Remark 5. Observe that the Bayes factors,B12(t)= q1(1, t) andB21(t)= q2(1, t).

In summary,�(f, t), which determines the likelihood or integrated likelihood, is charac-
terized by the unnormalized filtering equation.�(f, t), which determines the posterior, is
characterized by the normalized filtering equation, and is the optimum filter in the sense of
least mean square error.qk(fk, t), k = 1,2, which determines the Bayes factors, is charac-
terized by the system of evolution equations. The filtering equations for�(f, t) and�(f, t)
are derived in[6] and the system of evolution equations forqk(fk, t), k = 1,2, is derived
in [4].

3.3. Consistency of the likelihoods, posterior and Bayes factors

To compute them for statistical inference, one constructs recursive algorithms to approxi-
mate them. Zeng[6,4] applied Markov chain approximation methods to construct recursive
algorithms for computing the posterior and Bayes estimates (the Bayes factors). One basic
requirement for the recursive algorithms is consistency: The approximate versions (i.e. the
likelihoods, posterior and Bayes factors), computed by the recursive algorithms, must con-
verge to the true ones. The following theorem proved by Theorem 1 and Corollaries 1 and
2 provides the theoretical foundation for consistency.
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Let (�(k)� , X
(k)
� ) be an approximation of(�(k), X(k)). Then, we define

�Y (k)� (t)=



N1(

∫ t
0 �1(�

(k)
� (s),X

(k)
� (s), s)ds)

N2(
∫ t

0 �2(�
(k)
� (s),X

(k)
� (s), s)ds)

...

Nn(
∫ t

0 �n(�
(k)
� (s),X

(k)
� (s), s)ds)


 , (4)

setF
�Y (k)�
t =�( �Y (k)� (s),0�s� t), and takeL(k)� (t)=L

((
�(k)� (s),X

(k)
� (s), Y

(k)
� (s)

)
0� s� t

)
.

Suppose that(�(k)� , X
(k)
� , �Y (k)� ) lives on(�(k)

� ,F(k)
� , P

(k)
� ), with Assumptions 1–5. Then,

there also exists a reference measureQ
(k)
� with similar properties. Next, we define the

approximate versions that the recursive algorithms compute.

Definition 5. For k = 1,2, let��,k(fk, t) = EQ
(k)
�

[
fk

(
�(k)� (t), X

(k)
�x (t)

)
L
(k)
� (t) |F �Y (k)�

t

]
,

��,k(fk, t)=EP
(k)
�

[
fk

(
�(k)� (t), X

(k)
�x (t)

)
|F �Y (k)�

t

]
, q�,1(f1, t)=��,1(f1, t)/��,2(1, t) and

q�,2(f2, t)= ��,2(f2, t)/��,1(1, t).

Theorem 2. Suppose that Assumptions1–5hold for the models(�(k), X(k), �Y (k))k=1,2 and

that Assumptions1–5 hold for the approximate models(�(k)� , X
(k)
� , �Y (k)� )k=1,2. Suppose

(�(k)� , X
(k)
� ) ⇒ (�(k), X(k)) as� → 0.Then, as� → 0, for k= 1,2,

(i) �Y (k)� ⇒ �Y (k);
(ii) ��,k(f, t) ⇒ �k(f, t);

(iii) ��,k(f, t) ⇒ �k(f, t);
(iv) (q�,1(f1, t), q�,2(f2, t)) ⇒ (q1(f1, t), q2(f2, t)) for all bounded continuous functions,

f, f1, andf2, andt >0.

Proof. To simplify notation, we exclude the superscript,(k). Since(��, X�) ⇒ (�, X),
continuous mapping theorem implies that the stochastic intensities of�Y� converges weakly
to that of�Y . This implies�Y� ⇒ �Y . Note that Eq. (3) implies thatQk{EQk [Lk(Xk, Yk) |Yk]=
0} = 0 for k = 1,2. To show parts (ii)–(iv), since (by Remark 1) under the
reference measureQ�, (��, X�) and �Y� are independent, it suffices to show((��, X�),�Y�, L�) ⇒ ((�, X), �Y ,L) under the reference measures. The Radon–Nikodym derivative
dP�/dQ� is

L�(t)=
n∏
j=1

exp

{∫ t

0
log �j (��(s−),X�(s−), s−)dY�,j (s)

−
∫ t

0
[�j (��(s),X�(s), s)− 1] ds

}
.
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Noting (��, X�, �Y�) ⇒ (�, X, �Y ) under the reference measures, one finds that continuous
mapping theorem andKurtz and Protter’s Theorem[5] imply that∫ t

0
log �j (��(s−),X�s−), s−)dY�,j (s) ⇒

∫ t

0
log �j (�(s−),X(s−), s−)dYk(s),

∫ t

0
[�j (��(s),X�(s), s)− 1] ds ⇒

∫ t

0
[�j (�(s),X(s), s)− 1] ds,

and((��, X�), �Y�, L�) ⇒ ((�, X), �Y ,L) under the reference measures (condition C2.2(i)
of Kurtz and Protter[5] holds in our case, see Example 3.3 there,). Hence, Theorem 1 and
Corollaries 1 and 2 imply (ii)–(iv), respectively.�
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