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Abstract

We prove weak convergence of a type of conditional expectation, which provides a straightforward
proof of Goggin’s Theorem and further proves the consistency of (integrated) likelihood, posterior,
and Bayes factor for a class of transactional asset price models recently developed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The weak convergence ¢k ", YV) on a probability spaceQ”, 7V, PV) to (X, Y)
on (Q, #, P) does not necessarily imply that”" [F(xV)|YN] = E[F(X)|Y], even
for bounded, continuous functions, However, Goggif2] showed that the limit of the
conditional expectations can be determined if it is possible to make an absolutely contin-
uous change of probability measure, fram’ to QV with LY (XN, YV) = dPV/dQV
being the Radon—Nikodym derivative, so thaf andy " are independent under" . Gog-
gin’s main condition guaranteeing the weak convergence of the conditional expectation is
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that (X", YN, LN (XN, YV)) under@? converges in distribution teX, Y, L(X, Y)) un-
der Q. Under the same conditions of Gogd®i, we provide a short proof of the weak
convergence of this type of conditional expectatia®" [F(XM)LN(xV,yV)|YV] =
EC[F(X)L(X,Y)|Y]asN — oo, establishing Goggin’s theorem. We note that Crimaldi
and Pratelli i 7] at about the same time independently proved a similar result.

We note tha €[ F(X)L(X, Y) | Y]for suitably chosef solves the Duncan—Mortensen—
Zakai (unnormalized filtering) equation in the classical filtering problem. Hence, weak
convergence of this type of conditional expectation can be used in proving the consistency
of some numerical algorithms for computing Duncan—Mortensen—Zakai equation. However,
this paper focuses on another important application to the statistical inference for a class of
partially observed models of asset price for transaction data recently propdéédiihe
main appeal of the class of modelsis that they are framed as afiltering problem with counting
process observations. Thé#@ [ F(X)L(X, Y) | Y] relates to the continuous-time likelihood
(or integrated likelihood in Bayesian statistics) of the model, which is specified by the
unnormalized filtering equation. The Markov chain approximation method can be applied
to develop recursive algorithms based on the unnormalized filtering equation to compute
the continuous-time likelihood. Therefore, weak convergence of this type of conditional
expectation is useful in proving the consistency of the recursive algorithms for likelihoods.
Furthermore, together with the continuous mapping theorem, weak convergence of this type
of conditional expectation can also prove the consistency of the recursive algorithms for
computing posterior and Bayes factor, which is the ratio of the integrated likelihoods of the
two models considered in model selection.

Section 2 presents and proves the main theorem with two corollaries. The first corollary
is Goggin’s theorem and is related to the consistency of posterior. The second relates to
the consistency of Bayes factor. It should be noted that the results in Section 2 are fairly
general, because they are for the random variables in the complete, separable metric spaces.
To present an application, Section 3 first reviews the class of models propdéégdthen
proves the consistencies of the likelihoods, posterior and Bayes factor.

2. The main result

Theorem 1. Suppose that;Sand $ are completgseparable metric spaces and that?"
YNy, N=1,2,..., and (X,Y) are S; x Sp-valued random variables defined on the
probability spacesQ”, #V, PV)and(Q, #, P), respectively. Suppose thax ™, YV)}
converges in distribution t@X, Y), that PY < Q" on o(XV,Y") with dPV /dQ" =
LN(xN,y"), and that Q" (Q) is a probability measure o ™ (%) such thatx?, vy~
(X, Y) are independent unde?” (Q).

Suppose that th@" -distribution of (X", YV, LN (XV, YV)) converges weakly to the
Q-distribution of(X, ¥, L(X, Y)), whereEC[L(X, Y)] = 1. Then the following hold

(i) P<Qonag(X,Y)anddP/dQ = L(X,Y);

(ii) for every bounded continuous functidh: S; — R, EC" [F(XV)LN (XN, yNy| v V]
converges weakly t6 2[F(X)L(X,Y)|Y]asN — oo.
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Proof. Part (i) is from part (i) of Theorem 2.1 {2]. The following is the proof for part (ii).

Picke > 0. Then, as ii2], there exists a bounded, continuous functiénw.l.0.g. strictly
positive, such thaE2[|L(X,Y) — LE(X, Y)|] <e.

Let zV = LN (xV, YN) andZ = L(X, Y). Using Skorohod’s representation, we can
find a probability spaceQ, 7, 0) where(X¥, ¥V, ZV) and(X, ¥, Z) are defined with
the following three properties: for eadt (X", ¥V, ZV) has the same distribution as
(XN, YN, LN(xN, YN))underQN (X Y, Z) hasthe same distribution &%, ¥, L(X, Y))
underQ; and(XN YN, ZNy - (X, Y, Z)0-a.s. SupposgF| < C. We observe that

EQ [|EQ [F()?N)é’vu?’v] _E© [F(X)Zu?] |]
<CE? [|Z e ?)|] +CE? [|2N — LEXN, ?N)|]
+ EQ [|EQ [F()%N)LS()?N, ?N)WN] _E? [F()%)LE(X, ?m?] |] G

Now, it suffices to prove the right-hand side of the above inequality can be arbitrary small
for large enougtN. Thefirst termis less tharCe. For the second term, we observe

EQ[ILE RN, M) = 2V < EQ[IL8 (&Y, ¥Y) - 15K, 1))
+E© [|L8(5(, Y) — Z|] +E2 [|Z - ZN|] .

Since(X", ¥YN) - (X, Y) (0-a.s., and.? is bounded and continuous, the first expectation
is less thar for largeN. The second expectation is less thaoy the assumption oh®.
Sincez" — Z Q-a.s.,and ZV d0 — [ ZdQ (since all the integrals are identically 1),
the last expectation is less thafor largeN. Therefore, thesecond ternof (1) is less than
3Ce.

Noting that bothF and L? are bounded and continuous real variables, one finds
that the mapping(y, ©) — [ F(x)L*(x, y)u(dx) is continuous. Therefore, noting that
N, 1Ny > (¥, ), wherep” = 0~1(XV) andpu= Q~1(X), we obtain that théhird term
of (1) is less than for largeN. [

Theorem 1 relates to the consistency of likelihood in the application of Section 3. The
following corollary is Goggin Theorem and relates to the consistency of posterior in the
application of Section 3. We use the notatiofl) = X (X, = X), to meanx? (X,)
converges weakly tX in the Skorohod topology a8 — oo (¢ — 0).

Corollary 1. Under the same conditions of Theordrand the assumption tha@{E<[L
(X,Y)|Y] =0} =0, for every bounded continuous functigh : S; — R, we have

EPY[F(XN)| YN] converges weakly t6”[F(X) | Y] asN — oc.
Proof. Bayes theorem, Theorem 1 and continuous mapping theorem imply that

EQ"[F(XM)LN (XN, YNy YV] EC[F(X)L(X,Y)|Y]
EQV[LN(XN,YNy|YN] EQ[L(X,Y)|Y]
=EPIFX)|Y]. O

EPIF(xXNy| YN =
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Corollary 2 relates to the consistency of Bayes factor in the application of Section 3.

Corollary 2. Supposethatfdr=1, 2, S{k) andSék) are completeseparable metric spaces
and that(X}, V) (Xk, Yi) on (@Y, Z, PY) (@, Z 1. Py)) satisfies the same con-
ditions of Theorem.. Suppose tha@; {E 2 [Li(Xk, Yi) | Yx] =0} =0for k =1, 2. Define

N
EA[FRXNHLY XY, vM) YN

N
q1 (F1) =
EQF (LY (XY, vy | v

and

N
E% [F(xLY (xY, v Y]]

N
qs (F2) =
EQU LN (XY vy YN

Defineqg1(F1) and g2(F>) similarly. Then for every bounded continuous functidf :
S R, (g (F1), ¢) (F2)) converges weakly tay1(F1), g2(F2)).

Proof. By the proof of Theorem ](,EQllv[Fl(Xf’)Lllv(XN, Y 1v), EQZZV[FZ(XQ’)LIZV
XY,y 1Y) = (EQ[Fi(X1)L1(X1, Y1) | V1], EQ2[Fa(X2)La(X2, Y2) | Y2]), and
the continuous mapping theorem implies that

— N
ECT (R xHLY xN v 1 v

N EQ P (X)L1(X1.Y1) | V1]
qy (Fy) | _ E%2 (LY (XY vd) | vd] - EQ2[Ly(X2.Y2) | Y2l
g5 (F2) E92 [F(x))LY (XY vY) | v EQ2[Fy(X9)La(X2.Y2) | Yol

EC91[L1(X1,Y1) | Y1l
EQ]lV[Lf’(Xf’,YlN)lYf’] S
_ [aaFp) 0

| q2(F2) |

3. Application to a class of asset price models

In this section, we first review the class of partially-observed models for transactional
asset price ifi6] and their continuous-time likelihoods, posterior and Bayes factors. Then,
we apply the theorem and the two corollaries in Section 2 to prove the consistency of the
likelihoods, posterior and Bayes factors.

3.1. The class of models

In trade-by-trade level, the asset price does not move continuously as the common asset
price models such as geometric Brownian motion or jump-diffusion processes suggest,
but move level-by-level due to price discreteness. When we view the prices according to
price level, we model the prices of an asset as a collection of counting processes in the
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following form:

N1(fp 42(0(s), X (5, 5) ds)
. Na( [ 22(0(s), X (s), 5) ds)

Y(t)= . 2

Na(fy ﬂvn(e(si, X (s), s)ds)

whereY; (1) =N;(fy 4;(0(s), X (s), s) ds) is the counting process recording the cumulative
number of trades that have occurred at jiteprice level (denoted by;) up to timet.
Moreover0(¢) is a vector of parameters in the model an@) is the intrinsic value process,
which cannot be observed directly, but can be partially observed thrﬁu@hppose that

P is the probability measure @), X, Y). We invoke five mild assumptions on the model.

Assumption 1. {Nj}’]’.:l are unit Poisson processes under meaBure
Assumption 2. (0, X), N1, No, ..., N, are independent under measure P.

Assumption 3. The total intensity process(6, x, t), is uniformly bounded above, namely,
there exists a positive constafit, such that G< a(0, x, 1) < C for all > 0 and all(, x).

Remark 1. Assumption 3 is for technical reasons. These three assumptions imply that
there exists a reference meas@eand that after a suitable change of measur&to

0, X), Y1, ..., Y, becomeindependent, akig Yo, ..., Y, become unit Poisson processes.
Also, the independence in Assumption 2 implies the probability to have any simultaneous
jumps is zero.

Assumption 4. The intensity,4;(0, x,t) = a(0,x,t)p(yj | x), wherea(0, x, 1) is the
total trading intensity at timé and p(y; | x) is the transition probability fronx to y;,
thejth price level.

Remark 2. This assumption imposes a desirable structure for the intensities of the model.
It means that the total trading intensityd(z), X (¢), t) determines the overall rate of trade
occurrence at timeandp(y; | x) determines the proportional intensity of trade at the price
level, y;, when the value ig. Note thatp(y; | x) models how the trading noise enters the
price process.

Assumption 5. (0, X) is the unique cadlag solution of a martingale problem for a generator
A such that

12
Mf(t)=f(9(t),X(t))—/0 Af(0(s), X(s)) ds

is a%,ﬂ’x—martingale forf € 2(A), wheregf'f)’x is the o-algebra generated byl(s),

X(s))o<s<i-
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Remark 3. The martingale problem and the generator approach[{§gprovide a pow-
erful tool for the characterization of Markov processes. Assumption 5 includes all relevant
stochastic processes such as diffusion and jump-diffusion processes.

Remark 4. Under this representatio(](z), X (+)) becomes the signal process, which can-
not be observed directly, but can be partially observed through the counting processes,
Y (1), corrupted by trading noise, which is modeled pgy; | x) (see[6] for more about
trading noise). Hence, X, Y) is framed as diltering problem with counting process
observations

3.2. Foundations of statistical inference

3.2.1. The continuous-time joint likelihood

The probability measur® of (6, X, Y) can be written a®® = Py x Pyg.x, Where
Py . is the probability measure faif), X) such thatM () in Assumption 5 is aﬁff’x-
martingale, andP, |¢ . is the conditional probability measure for given (6, X). Un-
derP, ¥ depends on0, X). Recall Irom Remark 1 that there exists a reference mea-
sureQ such that unde®, (0, X) andY become independent, and, Yo, ..., Y, become
unit Poisson processes. Therefaecan be decomposed &= Py, x Qy, whereQ,
is the product probability measure farindependent unit Poisson processes. Then, the
Radon—Nikodym derivative of the modél(t), that is thecontinuous-time joint likelihood
of (0, X, Y), is,

L —d—Pt _dPg_’xt dPy\O,xt —dPle’xt
()_dQ()_dPegx()X do, (1) = do, ()
n t
=1] exp{/ log Zx(0(s—), X (s—), s—) dYi(s)
k=1 0
t
—/O [k (0(s), X (s),5) — 1] dS}. ©))

3.2.2. The continuous-time likelihoodsiof

However,X cannot be observed. To obtain the integrated likelihood of the model, which
is the marginal likelihood of’, we may integratd.(r) on (0, X), or equivalently, write the
integrated likelihood in terms of conditional expectation. JE’E = 0'{()7(s)) |0<s <t} be
the available information up to tinte

Definition 1. Let ¢(f, 1) = EC[£(0(t), X (1)) L(2) | 5’;?]-
If (0(0), X(0)) is fixed, then the likelihood of is EC[L(7) | gf’?] = ¢(1,1). If a prior

is assumed or6(0), X (0)), then theintegrated (or marginal) likelihood of Y is also
oL, 1).
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3.2.3. The continuous-time posterior

Definition 2. Let r, be the conditional distribution af)(r), X (1)) givenﬁf’f.

Definition 3. n(f, 1) = EP[f(0(t), X (1)) | Z 1= [ (0. x)m,(d0, dx).

If a prior is assumed o0(0), X (0)), thenn, becomes the continuous-time posterior,
which is determined by( £, #) for all continuous and boundéd

3.2.4. Continuous-time Bayes factors

For the class of micromovement models, we suppose that itasléénoted by0®, x ®)
Y®) for k=1, 2. Denote the joint likelihood afd®, X® y®) by L&) (¢), which is given
by Eq. (3). Denotap, (fi. = EC (0P 1), XV (1) L® (1) | 7 771, Then, the inte-
grated likelihood of is ¢ (1, 1), for Model k.

In general, the Bayes factor of Model 2 over ModelRb;, is defined as the ratio of
integrated likelihoods of Model 2 over Model 1, iB21(r) = ¢o(1,1)/$1(1, ). Suppose
B»1 has been calculated. Then, we can interpret it using the table furnished by Kass and
Raftery[3] (a survey paper of Bayes factor) as guideline.

Similarly, we can defing12. Obviously,B12 x B21 = 1.

Definition 4. Define the filter ratio processes:

$1(f1.1) $o(f2. 1)

Remark 5. Observe that the Bayes factof, (1) = ¢1(1, 1) and B21(r) = g2(1, t).

q1(f1, 1) = and qa(f2,1) =

In summaryg( f, t), which determines the likelihood or integrated likelihood, is charac-
terized by the unnormalized filtering equatiati.f, 1), which determines the posterior, is
characterized by the normalized filtering equation, and is the optimum filter in the sense of
least mean square errgf.(fx, t), k = 1, 2, which determines the Bayes factors, is charac-
terized by the system of evolution equations. The filtering equationgars) andz( f, ¢)
are derived irf[6] and the system of evolution equations §@« f¢, t), k = 1, 2, is derived
in [4].

3.3. Consistency of the likelihoods, posterior and Bayes factors

To compute them for statistical inference, one constructs recursive algorithms to approxi-
mate them. Zenf$,4] applied Markov chain approximation methods to construct recursive
algorithms for computing the posterior and Bayes estimates (the Bayes factors). One basic
requirement for the recursive algorithms is consistency: The approximate versions (i.e. the
likelihoods, posterior and Bayes factors), computed by the recursive algorithms, must con-
verge to the true ones. The following theorem proved by Theorem 1 and Corollaries 1 and
2 provides the theoretical foundation for consistency.
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Let 0%, x{V) be an approximation a®®, X®)). Then, we define

Ni(fy 40P (s), X (s), 5) ds)

7 (k)
v = Nz(f‘;”(@gk)(s?’xg 0@ 4

Na (i 2 (0% (5), XO(s)., 5) ds)

set7" — (7P (s), 0<s <1), and takeL” () =L ( (0. X0 ). v ) _ ).
<s<t

Suppose thatd®, x{F ¥y lives on(@®, 7& p»), with Assumptions 1-5. Then,
there also exists a reference measQéé) with similar properties. Next, we define the
approximate versions that the recursive algorithms compute.

v (k)
Definition 5. Fork =1, 2, lete, . (fi, 1) = E2 [ fi (9(“(;) X(k)(t)> LO@) | 7Y }

Tk (fro )= EP [f (000, x0w) 177 ] 4:.1(f1.1) = by 1(f1,1)/ b, (L, 1) and
4o.2(f2.1) = by o(f2. 1)/ b1 (L. 1).

Theorem 2. Suppose that AssumptiohsShold for the modelgd®, x®, y®), _, , and
that Assumptiond—5 hold for the approximate modet®®, x*, ¥*),_; ,. Suppose
0P, xPy = 0%, x®) as¢ — 0.Thenase — 0, fork=1,2,

(i) ¥ = 7®;
(i) Gpr(fi ) = Pp(fi1);
(i) me i (fit) = me(f, 1),
(V) (gea(f1,0), ge2(f2, 1)) = (q1(f1, 1), g2(f2, 1)) for all bounded continuous functions
f, f1,and f2, andz > 0.

Proof. To simplify notation, we exclude the superscrigt). Since (0., X;) = (0, X),
continuous mapping theorem implies that the stochastic mtensnhsminverges weakly

to that ofY . Th|$|mpl|esY& — Y. Note that Eq. (3) implies thad, {E [ Ly (Xk, Y) | Yi]=

0} = 0 for k = 1,2. To show parts (ii)—(iv), since (by Remark 1) under the
reference measur®,, (0., X;) and Y, are independent, it suffices to sha@,, X,),

178, L) = ((0, X), 17, L) under the reference measures. The Radon—Nikodym derivative
dPII/dQlI iS

n

t
Ly() = 1_[ exp{./o log /lj(gs(s_)a Xe(s—),5—) dYs,j(S)

j=1

'
—/ [2;(0:(s), Xc(s),5) — 1] ds} .
0
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Noting (0, X,, 175) = (0, X, )7) under the reference measures, one finds that continuous
mapping theorem anidurtz and Protter’s Theoreljb] imply that

t t
/ log 4;(0.(s—), Xes—), s—)dY; ;(s) = / log 4;(0(s—), X (s—), s—) dYx(s),
0 0

t t
f [4;(0:(5), X:(5),5) —1]ds = f [4;(0(s), X (s),s) — 1]ds,
0 0

and ((0,, X;). Y, L) = ((0, X), Y, L) under the reference measures (condition C2.2(i)
of Kurtz and Prottef5] holds in our case, see Example 3.3 there,). Hence, Theorem 1 and
Corollaries 1 and 2 imply (ii)—(iv), respectively.[]
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