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Abstract

We highlight a general hybrid system as the micromovement model for asset price using counting
processes recently introduced with its Bayes estimation via filtering. We construct a new simple
micromovement model and apply it to analyze trade-by-trade stock price data in the light of the
series of works initiated by Christie and Schultz [Why do NASDAQ market makers avoid odd-eighth
quotes?, Finance 49 (1994) 1813–1840]. Through the new model, we propose more reasonable, but
computationally intensive measures for trading noise including clustering noise and non-clustering
noise, and for trading cost. We employ Bayes estimation via filtering to obtain parameter estimates of
the new model and to provide numerical measures of trading noise and trading cost for three stocks
from four chosen periods. Our empirical results support the important findings in [Christie, Harris,
Schultz, Why did NASDAQ market makers stop avoiding odd-eighth quotes?, Finance 49 (1994)
1841–1860; Barclay, Christie, Harris, Kandel, Schultz, The effects of market reform on the trading
costs and depths of NASDAQ stocks, J. Finance 54(1) (1999) 1–34].
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1. Introduction

Since transactions data (or trade-by-trade data) became available in late 1980s, many
micromovement models, describing the transactional price behaviors, have been proposed
and developed to answer questions concerning the assessment of market quality, market
regulations, and the understanding of market behavior and market microstructure. These data
are referred to as ultra-high-frequency (UHF) data by Engle [4]. Other recent developments
include Goodhart and O’Hara [9], Engle and Russell [6], Zhang et al. [16], Engle and Lunde
[5], Rydberg and Shephard [12], among others.

Zeng [14] developed a general class of partially observed models using counting processes
for the micromovement of asset price. This class of models is a hybrid system of continuous
state space and discrete state space, which is able to capture the difference between the
micromovement (in a discrete state space) and the macromovement (referring to the daily,
weekly or monthly price behaviors, and in a continuous state space) caused by trading noise,
and sustain the strong relationship between the micro- and macromovements. In the models,
the price and the intrinsic value of an asset are separated. The value process is supposed
not to be observed directly, but can be observed through the prices, whose trading times
follow a conditional Poisson process. Due to price discreteness, the prices are formulated as
a collection of counting processes, each of which counts the number of trade at a price level.
The model can then be framed as a filtering problem with counting process observations.
The advantage of this framework is that it is not only able to fit the real world situation, but
also able to contain the complete information of prices and trading times and to use them
in Bayesian parameter estimation via filtering also developed in Zeng [14]. Transactions
data are unevenly spaced in time, discrete in value and huge in size. Bayes estimation via
filtering illustrates a substantial improvement in real-time estimation of parameters and
value process.

Good measures of trading noise and cost are important, because they quantify the de-
gree of competition and the market efficiency, and hence can be used to assess market
quality. Many researches have been done on measuring trading noise. The models com-
monly used are time series models (see [8], and the references therein). However, due
to the limitation of time series models, they ignore important features of transaction data
such as the irregularity in time, the price discreteness, price clustering and other micro-
movement characteristics. Christie and Schultz [3] propose a simple measure for trading
cost and their works have important impact (see below). This paper demonstrates one
important application of the models and the Bayes estimation via filtering in [14] by
providing more sophisticated measures and actual estimates for both trading noise and
trading cost.

Christie and Schultz [3] questioned the competitiveness of the NASDAQ market, based
on their observation that NASDAQ dealers avoided odd-eighth quotes in 70 of the 100
largest NASDAQ stocks and further comparison of the trading noise and trading costs
of NASDAQs dealer markets and those of NYSE market. They suggested that NASDAQ
dealers had tacitly colluded to sustain wide ask-bid spread, leading to unnecessarily large
trading noise and trading cost for investors. Subsequentially, Christie et al. [2] described an
interesting event: after several national newspapers reported the discovery of Christie and
Schultz [3] on May 26 and 27, 1994, four dealers out of 10 most active NASDAQ stocks,
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dramatically increased their use of odd-eighth quotes on May 27 and the next trading day,
May 31, 1994, resulting in nearly 50% drop in trading noise and cost.

Furthermore, the results of Christie and Schultz [3] led to regulatory investigations, legal
activities, and numerous academic studies. This culminated with the Securities and Ex-
change Commission (SEC) imposed a series of market reforms in NASDAQ. First, market-
makers consented to stop the agreement of escaping odd-eighth quotes. Second, the SEC
established new rules governing trading on NASDAQ. These reforms provide investors
more competitive quotes via the compulsory exposition of customer limit orders and the
dissemination of superior prices through a proprietary trading system. The new trading en-
vironment was established gradually starting on January 20, 1997 for the first group of 50
stocks, then for a second group of 50 stocks on February 10, 1997. It was completed for all
the NASDAQ stocks by October 13, 1997. Barclay et al. [1] surveyed the outcomes of these
market reforms by calculating the changes in several elementary quantitative measures on
trading noise, trading cost and others. Their results validated the SECs many goals had
been achieved. The trading noise had become overall smaller, resulting in the trading cost
measured by the effective spreads further dropped by approximate 30 per cent.

The data analyzed in these papers have a large amount of trading noise caused by trading
mechanism including discrete noise (trade at multiples of $ 1

16 ), clustering noise (for exam-
ple, more prices at quarters than at odd-eighths), and non-clustering noise which includes
all other trading noise. In this paper, in the spirit of Zeng [14], we construct a new simple
micromovement model (we call this model NSMM) to analyze the UHF data in the works
of Christie and Schultz. The NSMM not only explicitly models the discrete noise, clustering
noise and none clustering noise, but also provides natural, but more sophisticated measures
for different types of trading noise and for trading costs. We illustrate the usefulness of the
NSMM and its Bayes estimation via filtering by examining the UHF data for three stocks
over four periods. Two stocks, AMGEN and APPLE (Computer) are from NASDAQ and
they were among the four stocks identified by Christie et al. [2] that suddenly adopted the
use of odd-eighth quotes on May 27 or May 31, 1994. The first data set chosen is one
month UHF data (usually, 22 business days) up to the last day avoiding odd-eighth quotes.
The second data set is one month UHF data starting from the first day adopting odd-eighth
quotes (May 27, 1994 for AMGEN, and May 31, 1994 for APPLE). The third period chosen
is of the month of June, 1995, which is one year after the publicity of the finding of Christie
and Schultz [3], but is before the market reforms in 1997. The fourth period is of the month
of June, 1999, which is about two years after the market reforms were completed. Our em-
pirical studies confirm the dramatic drop in trading noise and in trading cost for AMGEN
and APPLE from the first period to the second period. The trading noise and trading cost
in the third period were about the same as those in the second period, but there was further
significant drop in the four period after the market reforms. The third stock is IBM from
New York Security Exchange (NYSE), a continuous double-auction market. The results of
IBM are consistent over the four periods showing the stability and maturity of NYSE.

The rest of the paper proceeds as follows. Section 2 highlights the general class of mi-
cromovement models, presents the NSMM and defines the new measures for trading noises
and cost. Section 3 briefly describes the related Bayes estimation via filtering procedure
and reports the empirical results for the three stocks over the four periods of time. Section
4 concludes.
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2. The micromovement model

2.1. The general class of micromovement models

The underlying economic intuition is that the price is constructed from an intrinsic value
process by incorporating trading noises. The intrinsic value process, X, has a continuous
state space. X can only be partially observed through the price process,Y, at unevenly spaced
trading times modeled by a conditional Poisson process. Y has a discrete state space given
by the multiples of the minimum price variation (set by trading regulation), a tick, which
is assumed to be 1/M . The couple, (X, Y ), furnishes a reasonable hybrid system for the
trade-by-trade price process.

Suppose that � is a vector of parameters in the model and (�, X, Y ) is defined in a
complete filtered probability space (�,F, {Ft }�0, P ) (see for example, [11]), where P is
the physical probability measure. We first make a mild assumption on (�, X). The martingale
problem and the generator (or semigroup operator) approach [7] offer a general and useful
methodology for the characterization of Markov processes. Examples include diffusion
processes, jump-diffusion processes, and regime-switching jump-diffusion processes.

Assumption 2.1. (�, X) is the unique solution of a martingale problem for a generator A
such that for every f in the domain of A

Mf (t) = f (�(t), X(t)) −
∫ t

0
Af (�(s), X(s)) ds

is a F�,X
t -martingale, where F�,X

t is the �-algebra generated by (�(s), X(s))0� s � t .

We have two equivalent ways to build the model. The first produces Y from X by in-
corporating noises. The second put (X, Y ) into a filtering problem with counting process
observations. The first approach is economically sound and the second is useful for statistical
inference.

2.1.1. Construction of price from value
After specifying the value process X(t) by its generator, there are two more steps in

constructing Y from X. First, the distribution of trading times t1, t2, . . . , ti , . . . is assumed to
follow a conditional Poisson process with an intensity a(X(t), �(t), t). Namely, the current
intensity is allowed to depend on the current asset value and the current parameter values.
Then, Y (ti), the price at time ti , is specified by

Y (ti) = F(X(ti)),

where y=F(x) is a random transformation with the transition probability p(y|x). In Section
2.2, F(x) is constructed to fit the three types of trading noise found in the data of Christie
and Schultz [3].
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2.1.2. Counting process observations
Due to price discreteness, the prices can be viewed according to price levels, that is,

prices are viewed as a collection of counting processes in the following form:

�Y (t) =

⎛
⎜⎜⎜⎝

N1(
∫ t

0 �1(�(s), X(s), s) ds)

N2(
∫ t

0 �2(�(s), X(s), s) ds)

...

Nn(
∫ t

0 �n(�(s), X(s), s) ds)

⎞
⎟⎟⎟⎠ , (1)

where Yk(t)=Nk(
∫ t

0 �k(�(s), X(s), s) ds) is the counting process indicating the cumulative
number of trades that have happened at the kth price level (denoted by yk) up to time t.

Four mild assumptions are made to ensure that the previous construction is equivalent
in probability measure to the counting process observations in Eq. (1). The equivalence
guarantees that the statistical inference based on the counting process observations can be
exploited to the previous construction.

Assumption 2.2. Nj ’s are unit Poisson processes under the probability measure P.

Assumption 2.3. (�, X), N1, N2, . . . , Nn are independent under P.

Assumption 2.4. For the total trading intensity, a(�, x, t), there exist a constant, C, such
that 0 < a(�, x, t)�C for all �, x and t > 0.

Assumption 2.5. The intensities are of the form: �k(�, x, t) = a(�, x, t)p(yk|x), where
p(yk|x) is the transition probability from x to yk , the kth price level, as in F(x).

In this framework, (�(t), X(t)) is the unobserved signal process, and �Y (t) is the obser-
vation process polluted by trading noise, which is modeled by p(y|x). Hence, (�, X, �Y )

becomes a filtering problem with counting process observations.

2.2. The new simple micromovement model

Now, we build a model for analyzing the trading noise and trading cost in the works of
Christie and Schultz by following three steps in construction. First, as the simplified model
in [14], we let the intrinsic value process be a geometric Brownian motion (GBM), which is
a standard model in finance (for the case of linear Brownian motion, see [15]). In stochastic
differential equation (SDE) form, X(t) follows:

dX(t)

X(t)
= � dt + � dW(t),

where W(t) is a standard Brownian motion, � is the instantaneous expected return and � is
the instantaneous volatility. Its generator for Assumption 2.1 is

Af (�, �, �, x) = 1

2
�2x2 �2f

�x2 (�, �, �, x) + �x
�f

�x
(�, �, �, x), (2)
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where � is the parameter for non-clustering noise to be defined and the parameter vector in
the model is � = (�, �, �).

We assume a deterministic trading intensity a(t). The trading duration (or waiting time)
data support this assumption instead of the elementary one that the trading intensity is
constant. Finally, we incorporate the three types of trading noise: discrete, non-clustering
and clustering, to obtain the price process. Here we construct new trading noises to fit the data
whose tick, the minimum price variation, is 1

16 instead of 1
8 as in Zeng [14]. Furthermore,

the clustering noise is more flexible and reasonable. For simple notation, at a trading time
ti , set x =X(ti), y =Y (ti). We specify the random transformation, y =F(x), in three steps:

Step 1: Add non-clustering noise V; x′ = x + V , where V is the non-clustering noise of
trade i at time ti . {Vi}, are assumed to be independent of the value process, and they are
i.i.d. with a doubly geometric distribution:

P {V = v} =
{

(1 − �) if v = 0,
1
2 (1 − �)�16|v| if v = ± 1

16 , ± 2
16 , . . .

.

Step 2: Integrate discrete noise by rounding off x′ to its closest sixteenth, y′ =R[x′, 1
16 ]=

R[x + V, 1
16 ].

Step 3: Integrate clustering noise by biasing y′ through a random biasing function b(·).
{bi(·)} are assumed independent of {y′

i} and serially independent. The data to be analyzed
have this clustering phenomenon: integers of prices are most likely, then are halves, odd
quarters, odd eighths, and odd sixteenths. Odd quarters have roughly the same probabilities,
and similarly for odd eighths and odd sixteenths.

To generate such clustering, a biasing function is constructed based on the following
biasing rules in words: if the fractional part of y′ is zero, then y stays on y′ with probability
one. If the fractional part of y′ is an half, then y stays on y′ with probability 1 − �, and
moves to the closest integers each with probability 1

2�. If the fractional part of y′ is an odd
quarter, then y stays on y′ with probability 1 − � − �, and moves to the closest integer
with probability � or to the closest half with probability �. If the fractional part of y′ is an
odd eighth, then y stays on y′ with probability 1 − � − � − 	, and moves to the closest
integer with probability �, to the closest half with probability � and the closest odd quarter
with probability 	. If the fractional part of y′ is an odd sixteenth, then y stays on y′ with
probability 1 − � − � − 	 − 
, and moves to the closest integer with probability �, to the
closest half with probability �, to the closest odd quarter with probability 	 and to the closest
odd eighth with probability 
.

This is a more flexible and reasonable biasing function than the one in [14], because it
further allows the halves to move to the closest integers, the odd quarters to the closest
halves or integers, and the odd eighths to the closest odd quarters, halves or integers.

To sum up, the price at a trading time ti is

Y (ti) = bi

(
R

[
X(ti) + Vi,

1

M

])
= F(X(ti)).

Through these steps, the random transformation, F(x), modeling the impact of trading
noise, is constructed. Appendix A provides the details on b(·), and the explicit transition
probability p(y|x) of F.
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2.2.1. New measures for trading noises and trading cost
Christies and Schultz focused on the clustering of ask and bid quotes and ignored the

trading noise in price. In our NSMM, the non-clustering noise is evaluated by the param-
eter, � ∈ [0, 1). When there is no non-clustering noise, � = 0. The larger �, the more
non-clustering noise exists. The clustering noise is measured by the vector: (�, �, 	, 
),
which are the probabilities moving to the closest integers, halves, odd quarters, and odd
eighths, respectively. When there is no clustering noise, all are zeros. However, because
the impact of each probability is different, we cannot just choose the usual vector norm
as a summary measure for the clustering noise. We need to weight each probability ac-
cording to its impact for the trading noise. Clearly, �, the probability moving to the clos-
est integers, has the heaviest impact, because it moves the price furthest from the value,
causing the largest trading noise. Moreover, we observe that the impact of � is about
twice of that of �, because � moves the prices about twice the distance from the value
as � does. Therefore, we propose the following summary measure, �, for the
clustering noise:

� = 9
16� + 1

4� + 1
8	 + 1

16
.

Christie and Schultz [3] define the effective spread (ES) as a measure of trading cost
relative to the “best price” as the following: ES = 2|Trade Price − “ Best Price” |.

They then proposed the mid-point of the bid-ask quote as a simple estimate for the
“Best Price”, that is, Best Price = (Ask + Bid)/2. This estimate, though simple, however,
is very rough and not informative, because the ask and bid offer sizes may not be the same.
Moreover, in the data they analyzed, there were more than a thousand trade prices in a day,
but there were usually only about a hundred quotes within that day (sometimes even only
about an half hundred quotes). This implies much useful information was discarded.

In our model, at a trading time ti , clearly, the intrinsic value, X(ti), is the best price.
Following their ideas, we define our effective spread (ES) as

ES = 2|Y (ti) − X(ti)|.
The intrinsic value, X(ti), can be estimated from the transactions data for each trade using
Bayes estimation via filtering. This “best price” is more accurate because the model is more
sound and much more information is used in obtaining the estimate. Moreover, the average
ES for trades with size in some range can be defined as

∑
(ES × size)/(

∑
size) where the

summation goes over all the related trades.

3. The empirical studies

We first highlight the Bayes estimation via filtering and then present the empirical studies
for the three stocks over the four periods of time.

3.1. Bayes estimation via filtering

In the modified simple micromovement model, the parameters are (�, �) for the value
process, � for the non-clustering noise and (�, �, 	, 
) for the clustering noise. All of them
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can be estimated by Bayes estimation via filtering. However, in order to reduce the number of
parameters in Bayes estimation, the clustering noise parameters is estimated by the method
of relative frequency, a variant of method of moments.

3.1.1. Estimating parameters for clustering noise
Let f0 (f1, f2, f3, and f4, respectively) be the empirical relative frequency of integer

(half, odd quarter, odd eighth, and odd sixteenth, respectively) price. We suppose that the
fractional parts of X are uniformly distributed.Then, the method of relative frequency implies
f0= 1

16 + 15
16�, f1= 1

16 (1−�)+ 7
8�, f2= 1

8 (1−�−�)+ 3
4	, f3= 1

4 (1−�−�−	)+ 1
2
, f4=

1
2 (1−�−�−	−
), with the unique solutions: �̂= (16f0 −1)/15, �̂= (16f1 −1+ �̂)/14,

	̂ = (8f2 − 1 + �̂ + �̂)/6, 
̂ = (4f3 − 1 + �̂ + �̂ + 	̂)/2.
Standard results on multinomial distribution (see two theorems in [13, pp. 109,122])

ensure these estimates are consistent and asymptotically normal. The standard errors can
be calculated also. Moreover, they are reliable because of the large amount of data used.
Other parameters (�, �, �) and the value at each trading time, X(ti), are estimated by the
Bayes estimation via filtering. The Bayes estimates for (�, �, �) are consistent by Theorem
5.1 of Zeng [14].

Bayes estimates, the marginal posterior mean, are determined by the filtering equation
characterizing the evolution of the joint posterior. Central to Bayes estimation via filtering
is to construct a consistent (or robust) recursive algorithm to compute the posterior.

3.1.2. Filtering equation

Let F �Y
t =�{( �Y (s))|0�s� t} be the �-algebra generated by the observed sample path of

�Y . F �Y
t is all the available information up to time t. Let �t be the conditional distribution of

(�(t), X(t)) given F
�Y
t . Assuming priors on (�(0), X(0)), �t becomes the joint posterior of

(�(t), X(t)). Let �(f, t)=EP [f (�(t), X(t))|F �Y
t ]=∫

f (�, x)�t (d�, dx). A simple version
of the filtering equation from Zeng [14] is reviewed below.

Theorem 3.1. Suppose that (�, X) satisfies Assumption 2.1, and �Y is defined in Eq. (1) with
Assumptions 2.2–2.4 with a deterministic trading intensity, that is, a(�(t), X(t), t) = a(t).
Then, for every t > 0 and every f in the domain of generator A, �(f, t) is the unique solution
of the SDE, the normalized filtering equation,

�(f, t) = �(f, 0) +
∫ t

0
�(Af, s) ds +

n∑
k=1

∫ t

0

[
�(fpk, s−)

�(pk, s−)
− �(f, s−)

]
dYk(s).

(3)

3.1.3. A convergence theorem and recursive algorithm
We review a convergence theorem in Zeng [14], which provides a blueprint for construct-

ing a recursive algorithm and guarantees the consistency of the algorithm.
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Let (�, X) be an approximation of (�, X). Then, we define

�Y(t) =

⎛
⎜⎜⎜⎝

N1(
∫ t

0 �1(�(s), X(s), s) ds)

N2(
∫ t

0 �2(�(s), X(s), s) ds)

...

Nn(
∫ t

0 �n(�(s), X(s), s) ds)

⎞
⎟⎟⎟⎠ (4)

and F
�Y
t =�( �Y(s), 0�s� t). We use the notation, X ⇒ X, to mean X converges weakly

to X in the Skorohod topology as  → 0.

Theorem 3.2. Suppose that (�, X, �Y ) is on (�,F, P ) with Assumptions 2.1–2.5, and
(�, Xx ,

�Y) is on (�,F, P) with also Assumptions 2.1–2.5. If (�, Xx ) ⇒ (�, X)

as  → 0, then as  → 0 (i) �Y ⇒ �Y ; and (ii) EP [F(�(t), Xx (t))|F �Y
t ] ⇒ EP [F(�(t),

X(t))|F �Y
t ] for all bounded continuous function F.

Another proof can be found in Kouritzin and Zeng [10]. This theorem furnishes a recipe
for producing a recursive algorithm based on the Markov chain approximation method to
compute the continuous-time posteriors and Bayes estimates. There are three steps. Step
1 is to build (�, X), the Markov chain approximation to (�, X). Step 2 is to obtain the
filtering equation for �(f, t) corresponding to (�, X, Y) by applying Theorem 3.1. The
filtering equation can be divided into two parts: the propagation equation;

�(f, ti+1−) = �(f, ti) +
∫ ti+1−

ti

�(Af, s) ds (5)

and the updating equation (assuming that a trade at jth price level occurs at time ti+1)

�(f, ti+1) = �(fp,j , ti+1−)

�(p,j , ti+1−)
. (6)

Note that the observation gets into the updating equation through the jth observed price
level. Step 3 transforms Eqs. (5) and (6) to the recursive algorithm in discrete state space
and in discrete time by two substeps: (a) expresses �(·, t) as a finite array with elements
being �(f, t) for lattice-point indicator f and (b) approaches the time integral in (5) with
an Euler scheme.

For detailed construction of the recursive algorithm for the NSMM, the readers are
referred to [14, Section 5.2].

3.2. The empirical study

3.2.1. Data
The data for the three stocks:AMGEN,APPLE Computer and IBM for the four periods of

time are extracted from the Trade and Quote (TAQ) database distributed by NYSE. We apply
standard procedures to filter the data. Each period consists of 22 business days (usually, a
month) with two exceptions in IBM. Although June 1995 had 22 business days, the first
two days’ data of IBM are excluded to ensure no large jump in price, because a dividend
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Table 1
Relative frequency table for fractional parts of price for AMGEN

Fractional parts 0 1/16 1/8 3/16 1/4 5/16 3/8 7/16

4/27–5/26, 94 0.2232 0.0072 0.0509 0.0110 0.1878 0.0053 0.0413 0.0051
5/27–6/29, 94 0.1471 0.0170 0.0962 0.0100 0.1103 0.0135 0.1195 0.0144
June, 95 0.1549 0.0125 0.1177 0.0089 0.1123 0.0090 0.0982 0.0064
June, 99 0.1109 0.0522 0.0718 0.0464 0.0773 0.0422 0.0660 0.0466

Fractional parts 1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16

4/27–5/26, 94 0.1654 0.0059 0.0343 0.0064 0.1843 0.0075 0.0570 0.0074
5/27–6/29, 94 0.1036 0.0119 0.0933 0.0105 0.1182 0.0129 0.1108 0.0108
June, 95 0.1045 0.0113 0.1117 0.0135 0.1069 0.0081 0.1135 0.0105
June, 99 0.0800 0.0441 0.0645 0.0479 0.0772 0.0460 0.0774 0.0494

The relative frequencies higher than 9% are in bold.

Table 2
Relative frequency table for fractional parts of price for APPLE

Fractional parts 0 1/16 1/8 3/16 1/4 5/16 3/8 7/16

4/27–5/26, 94 0.2424 0.0083 0.0465 0.0034 0.1828 0.0040 0.0416 0.0057
5/27–6/29, 94 0.1743 0.0138 0.1191 0.0138 0.1210 0.0090 0.1012 0.0132
June, 95 0.1747 0.0137 0.1093 0.0096 0.1046 0.0118 0.1078 0.0117
June, 99 0.1263 0.0505 0.0637 0.0365 0.0627 0.0478 0.0579 0.0423

Fractional parts 1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16

4/27–5/26, 94 0.1789 0.0073 0.0430 0.0054 0.1762 0.0057 0.0419 0.0068
5/27–6/29, 94 0.1133 0.0080 0.0794 0.0089 0.1014 0.0126 0.1022 0.0089
June, 95 0.1139 0.0102 0.1012 0.0074 0.0990 0.0099 0.1028 0.0123
June, 99 0.0819 0.0394 0.0629 0.0474 0.0865 0.0591 0.0768 0.0583

The relative frequencies higher than 9% are in bold.

was paid out at the beginning of the third date for IBM. The other exception is June 1997 of
IBM, because that month has only 21 business days. For IBM, June, 1997 instead of June,
1998 or 1999 is chosen for comparison because IBM’s tick, the minimum price variation,
had changed to ticks smaller than 1

16 after June 1997.
According to Christie et al. [2], AMGEN started odd eighths quotes on May 27, 1994.

APPLE started on the next trading day, May 31, 1994. The four periods for each stock
with the number of trading days and the number of trades occurring in each period are
presented in the first parts of Tables 4–6 for AMGEN APPLE and IBM, respectively. Note
that the number of trades is the number of data used for estimation. After extraction, the
data consist of trading time, price, and size for each trade. Tables 1–3 reports the relative
frequencies for all fractional parts of price in the four periods for AMGEN, APPLE and
IBM. For AMGEN and APPLE, clearly, there are price clustering. The first period has a
highest degree of clustering while the last period has the least. The middle two are about
the same. IBM, however, has about the same degree of clustering in all the four periods.
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Table 3
Relative frequency table for fractional parts of price for IBM

Fractional parts 0 1/16 1/8 3/16 1/4 5/16 3/8 7/16

4/27–5/26, 94 0.1837 0.0000 0.1287 0.0001 0.1126 0.0000 0.0771 0.0001
5/27–6/29, 94 0.1967 0.0001 0.1116 0.0001 0.0817 0.0000 0.0905 0.0001
June, 95 0.1600 0.0000 0.1145 0.0001 0.1401 0.0001 0.1274 0.0001
June, 99 0.1518 0.0081 0.1049 0.0161 0.1220 0.0101 0.1045 0.0107

Fractional parts 1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16

4/27–5/26, 94 0.1046 0.0002 0.1170 0.0001 0.1323 0.0000 0.1431 0.0001
5/27–6/29, 94 0.1193 0.0000 0.1119 0.0001 0.1295 0.0002 0.1579 0.0003
June, 95 0.1412 0.0002 0.1127 0.0000 0.1008 0.0001 0.1026 0.0001
June, 99 0.1278 0.0100 0.1023 0.0115 0.0981 0.0121 0.0955 0.0147

The relative frequencies higher than 9% are in bold.

Table 4
Parameter estimates for AMGEN in 4 periods

Period 4/27–5/26, 94 5/27–6/29, 94 June, 95 June, 99
No. of trades 16916 16242 23136 120829

� 105.25% −29.37% 120.58% −43.47%
(101.11%) (98.44%) (79.94%) (145.41%)

� 31.92% 29.60% 23.31% 41.32%
(0.64%) (0.50%) (0.33%) (0.26%)

� 0.1873 0.1690 0.1862 0.1527
(0.0058) (0.0045) (0.0039) (0.0012)

�: 1 0.1714(0.0030) 0.0902(0.0026) 0.0986(0.0022) 0.0516(0.0008)
�: 1/2 0.1298(0.0025) 0.0534(0.0021) 0.0550(0.0018) 0.0237(0.0007)
	: 1/4 0.3797(0.0028) 0.1619(0.0025) 0.1513(0.0020) 0.0520(0.0008)

: 1/8 0.2077(0.0060) 0.4922(0.0077) 0.5348(0.0065) 0.1231(0.0025)
Overall: � 0.1893 0.1151 0.1216 0.0491

Size (shares) Average Effective Spread

100 34.62 9.37 10.08 5.01
200 33.70 8.57 10.15 4.76
300 33.36 8.63 8.96 4.56
400 33.13 8.43 8.32 4.44
500 34.23 8.32 7.65 4.56
501–1000 33.25 6.94 8.20 4.26
1001–5000 28.01 7.58 8.51 5.64
5001–10 000 26.48 10.41 12.29 9.91
> 10 000 28.96 12.67 14.20 13.45

Total average 29.45 9.20 9.90 7.61

The estimates for � and � are annualized. Standard errors are in parentheses. The overall clustering measure:
� = 9

16 � + 1
4 � + 1

8 	 + 1
16 
. Average effective spreads are in cents.
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Table 5
Parameter estimates for APPLE in 4 periods

Period 4/28–5/27, 94 5/31–6/29, 94 June, 95 June, 99
No. of trades 20074 27967 40529 57263

� −29.18% −130.93% 121.56% 42.45%
(160.62%) (157.33%) (119.67%) (140.54%)

� 46.77% 45.48% 35.37% 35.54%
(0.86%) (0.72%) (0.49%) (0.36%)

� 0.1605 0.1553 0.2317 0.1087
(0.0053) (0.0036) (0.0030) (0.0017)

�: 1 0.1919(0.0028) 0.1193(0.0021) 0.1197(0.0018) 0.0680(0.0013)
�: 1/2 0.1467(0.0024) 0.0666(0.0017) 0.0673(0.0014) 0.0271(0.0010)
	: 1/4 0.3684(0.0025) 0.1607(0.0019) 0.1360(0.0015) 0.0481(0.0011)

: 1/8 0.1997(0.0053) 0.4771(0.0059) 0.5035(0.0049) 0.0942(0.0037)
Overall: � 0.2032 0.1337 0.1326 0.0569

Size (shares) Average Effective Spread

100 20.34 9.58 10.49 4.18
200 18.91 9.07 10.61 4.30
300 18.42 9.07 9.93 3.95
400 17.42 9.28 8.86 3.85
500 12.73 7.87 9.12 4.09
501–1000 11.34 6.90 8.75 4.10
1001–5000 11.07 7.49 8.98 4.55
5001–10 000 14.65 8.79 11.88 6.86
> 10 000 17.67 11.07 11.86 8.62

Total average 13.79 8.63 10.05 5.72

The estimates for � and � are annualized. Standard errors are in parentheses. The overall clustering measure:
� = 9

16 � + 1
4 � + 1

8 	 + 1
16 
. Average effective spreads are in cents.

3.2.2. Empirical results
A Fortran program for the recursive algorithm is constructed to calculate, at each trading

time ti , the joint posterior of (�, �, �, X), their marginal posteriors, their Bayes estimates
and their standard errors, and the trading effective spread, respectively. Then, the effective
spreads are cumulated according to trading size (volume). Finally, we obtain the average
effective spread over trading size and the overall average effective spread. The Fortran
program runs much faster than the real-time computation required and they are tested
extensively by simulated data as in Zeng [14] before applying to actual UHF data.

Tables 4–6 present the Bayes estimates for (�, �, �), the estimates for the clustering
parameters (�, �, 	, 
) with summary measure �, and the average effective spread across
size for the four periods for AMGEN, APPLE and IBM, respectively.

For the first two periods of AMGEN and APPLE, the estimates for � and � are close.
The estimates for � are quite different, but because their standard deviations (or errors)
(SEs) are large, their difference is not significant. The estimates for (�, �, 	, 
), however,
are significantly different. For AMGEN, �, � and 	, the probabilities to move to integers,
halves, and odd quarters, respectively, dropped significantly, ranged from 47.4–58.9%. 
, the
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Table 6
Parameter estimates for IBM in 4 periods

Period 4/29–5/31, 94 6/3–6/30, 94 June, 95 June, 97
No. of trades 27745 23940 35471 53021

� 118.27% −83.23% 60.90% 43.72%
(79.40%) (70.39%) (70.09%) (83.78%)

� 21.22% 20.53% 19.18% 23.52%
(0.32%) (0.31%) (0.22%) (0.21%)

� 0.0911 0.0843 0.1275 0.1233
(0.0034) (0.0036) (0.0030) (0.0024)

�: 1 0.1293(0.0022) 0.1431(0.0024) 0.1040(0.0018) 0.0952(0.0015)
�: 1/2 0.0574(0.0016) 0.0751(0.0018) 0.0974(0.0016) 0.0814(0.0013)
	: 1/4 0.1911(0.0019) 0.1514(0.0020) 0.1885(0.0017) 0.1563(0.0013)

: 1/8 0.6207(0.0059) 0.6286(0.0065) 0.6090(0.0053) 0.4808(0.0043)
Overall: � 0.1498 0.1575 0.1445 0.1235

Size (shares) Average Effective Spread

100 7.54 7.49 9.02 7.22
200 7.51 7.22 8.90 7.25
300 7.40 7.40 8.43 6.93
400 6.81 6.80 8.53 7.13
500 7.14 7.00 8.63 7.01
501–1000 7.08 6.82 7.94 6.85
1001–5000 7.56 7.57 8.04 7.60
5001–10 000 8.76 8.70 9.65 8.87
> 10 000 13.12 13.26 14.78 14.21

Total average 9.99 9.84 10.64 9.76

The estimates for � and � are annualized. Standard errors are in parentheses. The overall clustering measure:
� = 9

16 � + 1
4 � + 1

8 	 + 1
16 
. Average effective spreads are in cents.

probability to move to odd eighth, however, rose to more than double. Similar phenomenon
happened forAPPLE. Overall, the summary measure for clustering noise,�dropped 39.20%
forAMGEN and 34.20% forAPPLE in the second period. Next, we compare the ES for these
two periods. For AMGEN, we find that the average ES decreased 56.25 to 79.12% across
trading size and the overall average decreased 68.76%; and for APPLE, the average ES
decreased 37.35 to 52.90% across trading size and the overall average decreased 37.42%.
All of these support the findings of Christie et al. [2] that after odd eighth quotes were
adopted in the second period, although the basic characteristics of stocks such as � and �
were not affected, more prices, however, occurred at odd eighths. Consequently, the trading
noise and trading cost measured by ES reduced substantially.

The clustering estimates for the third period are close to those of the second period for
AMGEN and APPLE. Comparing the third and fourth periods, we observe substantial drops
in every parameter estimate of clustering noise and the summary measure, �, dropped more
than 50% for both stocks. For the trades with size not more than 5000 shares, the effective
spread decreased 33.73 to 53.10% for AMGEN and decreased 49.35 to 60.15% for APPLE.
All of these confirm the findings of Barclay et al. [1] that after the market reforms on
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NASDAQ, there were further significant reductions in trading noise and trading cost and
NASDAQ became a more efficient market.

As for IBM, although the estimates and the effective spreads vary a bit in different periods,
they are close and the effective spreads are low. This shows the NYSE auction market is
more mature and stable over this four periods.

4. Conclusions

In this paper, a hybrid system—the general partially observed micromovement model and
its Bayes estimation via filtering are reviewed. A new model is constructed for transaction
data with tick $ 1

16 and with more flexible clustering noise. Through the new model, new
measures for trading noise and trading cost are proposed. Bayes estimation via filtering
is then applied to three stocks from four chosen periods to obtain empirical measures of
trading noise and cost. Our results confirm the major findings in [2,1].

Appendix A. More on modeling clustering noise

In order to formulate the biasing rule, we first define a classifying function r(·),

r(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 if the fractional part of y is an odd sixteenth,

3 if the fractional part of y is an odd eighth,

2 if the fractional part of y is an odd quarter,
1 if the fractional part of y is a half,
0 if the fractional part of y is a zero.

(7)

The biasing rules determine the transition probabilities from y′ to y, p(y|y′). Then,
p(y|x), the transition probability for the random transformation, F, can be computed through
p(y|x) = ∑

x′p(y|y′)p(y′|x) where p(y′|x) = P {V = 16(y′ − R[x, 1
16 ])}. Suppose D =

16|y − R[x, 1
16 ]|. Then, p(y|x) can be calculated as the following when r(y) = 4 or 3.

Similarly, the more complicated cases when r(y) = 2, 1 or 0 can be computed

p(y|x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − � − � − 	 − 
)(1 − �) if r(y) = 4 and D = 0,
1
2 (1 − � − � − 	 − 
)(1 − �)�D if r(y) = 4 and D�1,

(1 − �)(1 − � − � − 	 + 
�) if r(y) = 3 and D = 0,
1
2 (1 − �)[�(1 − � − � − 	)

+
(2 + �2)] if r(y) = 3 and D = 1,
1
2 (1 − �)�D−1[�(1 − � − � − 	)

+
(1 + �2)] if r(y) = 3 and D�2.

(8)
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