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Abstract. This paper highlights recent developments in a rich class of counting process
models for the micromovement of asset price and in the Bayesian inference (estimation
and model selection) via filtering for the class of models. A specific micromovement model
built upon linear Brownian motion with jumping stochastic volatility is used to dem-
onstrate the procedure to develop a micromovement model with specific tick-level sam-
ple characteristics. The model is further used to demonstrate the procedure to implement
Bayes estimation via filtering, namely, to construct a recursive algorithm for computing
the trade-by-trade Bayes parameter estimates, especially for the stochastic volatility. The
consistency of the recursive algorithm model is proven. Simulation and real-data examples
are provided as well as a brief example of Bayesian model selection via filtering.

Key words: Bayesian statistics, counting process, estimation, filtering, Markov chain
approximation, model selection, price clustering, price discreteness, ultra high frequency
data.

1. Introduction

Asset price models can be broadly classified into two categories: macro- and
micro-movement models. Macro-movement refers to daily, weekly, and
monthly closing price behavior and micro-movement refers to transactional
price behavior. These data are refered to as ultra high frequency data by
Engle [5]. There are strong connections as well as striking distinctions
between the macro- and micro-movements. Zeng [13] proposed a general
class of partially-observed micro-movement models that bridge the gap
between the macro- and micro- movements caused by noise, and tie the
sample characteristics of micro-movement and macro-movement of price in
a consistent manner. The main appeal of the proposed model is that prices
are viewed as a collection of counting processes, each of which represents
a price level. Then, the model is framed as a filtering problem with count-
ing process observations. Alternatively, the price process can be constructed
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from the intrinsic value process by incorporating the trading noise. Zeng
[13] also developed continuous-time Bayes parameter estimation via filter-
ing for the model and Kouritzin and Zeng [9] further developed Bayesian
model selection via filtering for the class of models based on Bayes factor.

The first objective of this paper is to provide a thorough overview of the
rich class of counting process models for analyzing the micromovement of asset
price and of the Bayesian inference (estimation and model selection) via filtering
for the class of models. The Bayesian paradigm is chosen because it provides
not only additional model flexibility, but also the ability to incorporate real
prior information. The second objective is to provide a worked example to help
those who wish to carry out a similar analysis in practice. A specific micromov-
ement model built upon linear Brownian motion with jumping stochastic vola-
tilty(JSV-LBM) is developed to illustrate the modeling building technique. This
model is further used to demonstrate the procedure to implement Bayes esti-
mation via filtering, namely, to construct a recursive algorithm for computing
the trade-by-trade Bayes estimates. The consistency of the recursive algorithm
model is proven. Simulation results which demonstrate the effectiveness of the
use of Bayesian filtering to estimate trade-by-trade stochastic volatility are pro-
vided. The recursive algorithm is applied to an actual Microsoft data set to
obtain trade-by-trade Bayes parameter estimates. A brief example of Bayesian
model selection is also provided.

Section 2 presents the class of counting process models for the micro-
movement of asset price in two equivalent fashions and the equivalence of
two models is proven. Section 3 illustrates continuous-time Bayesian infer-
ence (estimation and model selection) via filtering for the class of mod-
els. Section 4 focuses on developing the micromovement model built on
JSV-LBM and applying the Bayesian inference via filtering to the model.
Simulation and real-data examples are provided in Section 4 as well as a
brief example of Bayesian model selection. Section 5 concludes the paper.

2. The Class of Counting Processes

This section presents the class of micromovement models in [13] in two
equivalent ways: one as a collection of counting processes of price levels
and the other as a construction of price from the intrinsic value of an asset
by incorporating noises.

2.1. MODELING PRICES AS A COLLECTION OF COUNTING PROCESSES

In real world trading, the price of an asset fluctuates as the result of inflow-
ing information and trading noise. In micromovement level, the price does
not move continuously as the common asset price models such as diffusion
or jump-diffusion processes suggest, but moves level-by-level due to price
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discreteness (caused by the minimum price variation set by trading regu-
lation). A technical analyst usually analyzes the price movement according
to price level in an attempt to extract useful information. From this view-
point, we can formulate the prices of an asset as a collection of counting
processes in the following form:

�Y (t)=




N1(
∫ t

0 λ1(θ(s),X(s), s)ds)

N2(
∫ t

0 λ2(θ(s),X(s), s)ds)
...

Nn(
∫ t

0 λn(θ(s),X(s), s)ds)


 , (1)

where Yj (t) = Nj(
∫ t

0 λj (θ(s),X(s), s)ds) is the counting process recording
the cumulative number of trades that have occurred at the j th price level
(denoted by yj ) up to time t . Moreover, θ(t) is a vector of parameters in
the model and X(t) is the intrinsic value process. Suppose that P is the
physical probability measure of (θ,X, �Y ). We make five mild assumptions
on the model.

ASSUMPTION 2.1. {Nj }nj=1 are unit Poisson processes under measure P .

Then, Yj (t) = Nj(
∫ t

0 λj (θ(s),X(s), s)ds) is conditional Poisson process
with the stochastic intensity, λj (θ(t),X(t), t). Given F θ,X

t , the filtra-
tion of θ and X, Yj (t) has a Poisson distribution with parameter∫ t

0 λj (θ(s),X(s), s)ds. Moreover, Yj (t)−∫ t

0 λj (θ(s),X(s), s)ds is a martingale
and

∫ t

0 λj (θ(s),X(s), s)ds is called the compensator of Yj (t) for each j .

ASSUMPTION 2.2. (θ,X),N1,N2, . . . ,Nn are independent under measure
P .

ASSUMPTION 2.3. The total intensity process, a(θ, x, t), is uniformly
bounded above, namely, there exists a positive constant, C, such that 0 �
a(θ, x, t)�C for all t >0 and (θ, x).

The total intensity a(θ, x, t) determines the expected rate of trading at
time t . These three assumptions imply that there exists a reference mea-
sure Q and that after a suitable change of measure to Q, (θ,X), Y1, . . . , Yn

become independent, and Y1, Y2, . . . , Yn become unit Poisson processes
(Bremaud [2]).

ASSUMPTION 2.4. The intensities are of the form: λj (θ, x, t)= a(θ, x, t)

p(yj |x), where p(yj |x) is the transition probability from x to yj , the j th price
level.

This assumption imposes a desirable structure for the intensities of the
model. It means that the total trading intensity a(θ(t),X(t), t) determines
the overall rate of trade occurrence at time t and p(yj |x) determines the
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proportional intensity of trade at the price level, yj , when the value is x.
Note that p(yj |x) models how the trading noise enters the price process.
The intensity structure plays an essential role in the equivalence of the two
approaches of modeling.

ASSUMPTION 2.5. (θ,X) is the unique solution of a martingale problem
for a generator A such that for a function f in the domain of A, Mf (t)=
f (θ(t),X(t))−∫ t

0 Af (θ(s),X(s))ds, is a F θ,X
t -martingale, where F θ,X

t is the
σ -algebra generated by (θ(s),X(s))0�s�t .

The martingale problem and the generator approach (Ethier and Kurtz
[6]) provide a powerful tool for the characterization of Markov processes.
Assumption 2.5 includes all relevant stochastic processes such as diffusion
and jump-diffusion processes for modeling asset price. Two examples are
given in Section 4.

Under this representation, (θ(t),X(t)) becomes a signal process, which
cannot be observed directly, but can be partially observed through the
counting processes, �Y (t), corrupted by trading noise, which is modeled by
p(yj |x). Hence, (θ,X, �Y ) is framed as a filtering problem with counting pro-
cess observations.

2.2. CONSTRUCTING PRICE FROM INTRINSIC VALUE

In Section 2.1, we view the prices according to the price levels. Alter-
natively, we can construct the prices in the order of trading occurrence
over time. The construction is predicated on the simple intuition that the
price is formed from an intrinsic value by incorporating the noises that
arise from the trading activity. In general, there are three steps in con-
structing the price process Y from the value process X. First, we spec-
ify X. This is done by Assumption 2.5, where (θ,X) are jointly specified
in order to allow time-dependent parameters such as stochastic volatility
and to prepare for parameter estimation. Next, we determine trading times
t1, t2, . . . , ti, . . . , which are driven by a conditional Poisson process with an
intensity a(X(t), θ(t), t). Finally, Y (ti), the price at time ti , is modeled by
Y (ti)=F(X(ti)), where y =F(x) is a random transformation with the tran-
sition probability p(y|x), the same as p(yj |x) in Assumption 2.4 assuming
y is at the j th price level.

Under this construction, the observable price is produced from the value
process by combining noises when a trade occurs. Information affects X(t),
the value of an asset, and has a permanent influence on the price while
noise affects F(x) (or p(y|x)), and only has a transitory impact on price.
The random transformation, F(x), is flexible and Section 4.1 constructs
one to accommodate the three important types of noise: discrete, clustering
and non-clustering. The construction of price is similar to the state-space
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model, but here we view the price process Y as a marked point process
(MPP), where the mark is price. Frey and Runggaldier [7] and Cvitanic
et al. [3] proposed similar MPP models, but both do not incorporate trad-
ing noise.

2.3. THE EQUIVALENCE OF THE TWO APPROACHES OF MODELING

Section 2.1 models the price process as a collection of counting processes,
while Section 2.2 constructs the price from the value. In this section, their
equivalence in distribution is proven. This guarantees the statistical infer-
ence based on the former modeling is also valid to the latter one.

Proposition 2.1. Suppose that The price vector process, �Y , is modeled by
equation (1) with Assumptions 2.1–2.5. Suppose that the price process, Y, is
constructed from the value process, X, by the three general steps in Section
2.2, (θ,X) satisfies Assumption 2.5 and a(θ, x, t) satisfies Assumption 2.3.
Then, �Y and Y have the same probability distribution.

Proof. First, we show that the intensity of Yj (t) in Assumption 2.4 can
be obtained from the construction approach in Section 2.2 by a heuristic
argument as the following:

P {Yj (t +h)−Yj (t)>0 |F θ,X
t }

=P {a trade occurs during (t, t +h] |F θ,X
t }

P {at the j th level |a trade occurs,F θ,X
t }

≈a(θ(t),X(t), t)p(yj |X(t))h. (2)

That is, the stochastic intensity kernels of the two formulations of MPP
are the same. Then, the two formulations have the same compensator and
therefore, have the same probability distribution also.1

3. Bayesian Inference via Filtering

This section presents the foundations of statistical inference for the class
of models, and presents a convergence theorem, which provides a recipe to
construct consistent recursive algorithms to approximate continuous-time
likelihoods, posterior, and Bayes factors.

1Related theorems supporting the above arguments can be found in the book of Last
and Brandt [11], especially, Theorems 8.3.3 and 8.2.2.
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3.1. FOUNDATIONS OF STATISTICAL INFERENCE

In this section, we study the continuous-time joint likelihood, the likeli-
hood, the integrated likelihood, the posterior of the proposed model as well
as the continuous-time Bayes factors for Models 1 and 2. Moreover, we
establish their relationships with the unnormalized and normalized filtering
equations as well as the system of evolution equations, respectively.

3.1.1. The Continuous-time Joint Likelihood

The probability measure P of �Y (t) can be written as P = Pθ,x × Py|θ,x ,
where Pθ,x is the probability measure for (θ,X) such that Mf (t) in
Assumption 2.5 is a F θ,X

t -martingale, and Py|θ,x is the conditional probabil-
ity measure on DRn [0,∞) for �Y given (θ,X) (where DRn [0,∞) is the space
of right continuous with left limit functions). Under P , �Y depends on
(θ,X). Recall that there exists a reference measure Q such that under Q,
(θ,X), �Y become independent, (θ,X) remains the same probability distri-
bution and Y1, Y2, . . . , Yn become unit Poisson processes. Therefore, Q can
be decomposed as Q=Pθ,x ×Qy , where Qy is the probability measure for
n independent unit Poisson processes. One can obtain the Radon–Nikodym
derivative of the model, that is the joint likelihood of (θ,X, �Y ), L(t), as
(see [2] p. 166),

L(t)= dP

dQ
(t)= dPθ,x

dPθ,x

(t)× dPy|θ,x

dQy

(t)= dPy|θ,x

dQy

(t)

=
n∏

k=1

exp
{∫ t

0
log λk(θ(s−),X(s−), s−)dYk(s)

−
∫ t

0

[
λk(θ(s),X(s), s)−1

]
ds

}
. (3)

or in SDE form:

L(t)=1+
n∑

k=1

∫ t

0

[
λk(θ(s−),X(s−), s−)−1

]
L(s−)d(Yk(s)− s).

3.1.2. The Continuous-time Likelihoods of �Y
However, X and the stochastic components of θ (such as stochastic vola-
tility) cannot be observed. What is needed for the statistical analysis is the
likelihood of �Y alone, which can be obtained by using conditional expec-
tation. Let F �Y

t = σ {( �Y (s))|0 � s � t} be all the available information up to
time t . We use EQ[X] to indicate that the expectation is taken with respect
to measure Q.
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DEFINITION 3.1. Let φt be the conditional measure of (θ(t),X(t)) given
F �Y

t defined as

φt {(θ(t),X(t))∈A}=EQ
[
I{(θ(t),X(t))∈A}(θ(t),X(t))L(t)|FY

t

]
.

DEFINITION 3.2. Let

φ(f, t)=EQ[f (θ(t),X(t))L(t)|F �Y
t ]=

∫
f (θ, x)φt (dθ,dx).

If (θ(0),X(0)) is fixed, then the likelihood of Y is EQ[L(t) |F �Y ]=φ(1, t). If
a prior is assumed on (θ(0),X(0)) as in Bayesian paradigm, then the inte-
grated (or marginal) likelihood of Y is also φ(1, t).

3.1.3. The Continuous-time Posterior

DEFINITION 3.3. Let πt be the conditional distribution of (θ(t),X(t))

given F �Y
t and let

π(f, t)=EP [f (θ(t),X(t))|F �Y
t ]=

∫
f (θ, x)πt (dθ,dx).

If a prior is assumed on (θ(0),X(0)) as in Bayesian inference, then πt

becomes the continuous-time posterior, which is determined by π(f, t) for
all continous and bounded f . Bayes Theorem (see [2], p. 171) provides the
relationship between φ(f, t) and π(f, t): π(f, t)=φ(f, t)/φ(1, t). Hence, the
equation governing the evolution of φ(f, t) is called the unnormalized filter-
ing equation, and that of π(f, t) is called the normalized filtering equation.

3.1.4. Continuous-time Bayes Factors

Denote Model k by (θ(k),X(k), �Y (k)) for k = 1,2. Denote the joint likeli-
hood of (θ(k),X(k), �Y (k)) by L(k)(t), as in equation (3). Denote φk(fk, t) =
EQ(k)

[fk(θ
(k)(t),X(k)(t))L(k)(t)|F �Y (k)

t ]. Then, the integrated likelihood of �Y is
φk(1, t), for Model k.

In general, the Bayes factor of Model 2 over Model 1, B21, is defined
as the ratio of integrated likelihoods of Model 2 over Model 1, i.e. B21(t)=
φ2(1, t)/φ1(1, t). Suppose B21 has been calculated. Then, we can interpret it
using Table I furnished by Kass and Raftery [8] as guideline. Similarly, we
can define B12, the Bayes factor of Model 1 over Model 2. Instead of nor-
malizing by its integrated likelihood, when the measure φk is normalized by
the integrated likelihood of the other model, a conditional finite measure is
obtained.
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Table I. Interpretation of Bayes factor

B21 Evidence against model 1

1–3 Not worth more than a bare mention
3–12 Positive
12–150 Strong
>150 Decisive

DEFINITION 3.4. For k = 1,2, let q
(k)
t be the conditional measure of

(θ(k)(t),X(k)(t)) given F �Y (k)

t :

q
(k)
t

{
(θ(k)(t),X(k)(t))∈A

}=
EQ
[
I{(θ(k)(t),X(k)(t))∈A}(θ(k)(t),X(k)(t))L(k)(t)|FY (k)

t

]

φ3−k(1, t)

=EQ
[
I{(θ(k)(t),X(k)(t))∈A}(θ(k)(t),X(k)(t))L̃(k)(t)|FY (k)

t

]
,

where L̃(1)(t) = L(1)(t)/φ3−k(1, t). The second equality is because φk(1, t),
k = 1,2, depend on the same filtration FY (1) = FY (2) and φk(1, t) can be
moved inside the conditioning.

DEFINITION 3.5. Define the filter ratio processes:

q1(f1, t)= φ1(f1, t)

φ2(1, t)
, and q2(f2, t)= φ2(f2, t)

φ1(1, t)
.

Observe that the Bayes factors, B12(t)=q1(1, t) and B21(t)=q2(1, t). More-
over, observe that qk(fk, t) can be written as qk(fk, t)= ∫

fk(θ
(k), x(k))q

(k)
t

(dθ(k),dx(k)). The integral forms of φ(f, t), π(f, t), and qk(fk, t) are impor-
tant in deriving the recursive algorithms where f (or fk) is taken to be a
lattice-point indicator function.

There are two advantages of Bayes factors. First, a Bayes factor nei-
ther requires the models to be nested, nor does it require the probability
measures of the models to be absolutely continuous with respect to those
of the total models in hypotheses. Second, Kass and Raftery [8] show that
under some conditions, Bayes factor ≈ BIC (Bayesian Information Crite-
rion), which penalizes according to both the number of parameters and the
number of data. This suggests that Bayes factor has this desirable property
also.
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3.1.5. Filtering and Evolution Equations

The filtering equations provide an effective means to characterize the infi-
nite dimensional continuous-time versions including likelihoods, posteriors,
likelihood ratios and Bayes factors. The unnormalized filtering equation
characterizes the likelihoods. The normalized filtering equation, which is
the optimum filter in the sense of least mean square error, characterizes the
posteriors. The system of evolution equations for qk(fk, t), k =1,2 charac-
terizes the likelihood ratios or the Bayes factors. The following two theo-
rems summarize all the useful equations.

THEOREM 3.1. Suppose that (θ,X, �Y ) satisfies Assumptions 2.1–2.5. Then,
φt is the unique measure-valued solution of the SDE, the unnormalized filter-
ing equation,

φ(f, t)=φ(f,0)+
∫ t

0
φ(Af − (a −n)f, s)ds

+
n∑

k=1

∫ t

0
φ((apk −1)f, s−)dYk(s), (4)

for t >0 and f ∈D(A), the domain of generator A, where a=a(θ(t),X(t), t),
is the trading intensity, and pk =p(yk|x) is the transition probability from x

to yk.
πt is the unique measure-valued solution of the SDE, the normalized fil-

tering equation,

π(f, t)=π(f,0)+
∫ t

0

[
π(Af, s)−π(f a, s)+π(f, s)π(a, s)

]
ds

+
n∑

k=1

∫ t

0

[π(f apk, s−)

π(apk, s−)
−π(f, s−)

]
dYk(s). (5)

Moreover, when the trading intensity is deterministic, that is, a(θ(t),

X(t), t)=a(t), the normalized filtering equation is simplified as

π(f, t)=π(f,0)+
∫ t

0
π(Af, s)ds

+
n∑

k=1

∫ t

0

[π(fpk, s−)

π(pk, s−)
−π(f, s−)

]
dYk(s). (6)

THEOREM 3.2. Suppose Model k (k = 1,2) has generator A(k) for
(θ(k),X(k)), the trading intensity ak =ak(θ

(k)(t),X(k)(t), �Y (k)(t)), and the tran-
sition probability p

(k)
j = p(k)(yj |x) from x to yj for the random transforma-

tion F (k). Suppose that (θ(k),X(k), �Y (k)) satisfies Assumptions 2.1–2.5. Then,
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(
q

(1)
t , q

(2)
t

)
are the unique measure-valued pair solution of the following system

of SDEs,

q1(f1, t)=q1(f1,0)+
∫ t

0

[
q1(A(1)f1, s)−q1(a1f1, s)+ q1(f1, s)q2(a2, s)

q2(1, s)

]
ds

+
n∑

j=1

∫ t

0

[
q1(f1a1p

(1)
j , s−)

q2(a2p
(2)
j , s−)

q2(1, s−)−q1(f1, s−)

]
dYj (s), (7)

q2(f2, t)=q2(f2,0)+
∫ t

0

[
q2(A(2)f2, s)−q2(a2f2, s)+ q2(f2, s)q1(a1, s)

q1(1, s)

]
ds

+
n∑

j=1

∫ t

0

[
q2(f2a2p

(2)
j , s−)

q1(a1p
(1)
j , s−)

q1(1, s−)−q2(f2, s−)

]
dYj (s) (8)

for all t > 0 and fk ∈ D(A(k)) for k = 1,2. When a1(θ
(1)(t),X(1)(t), t) =

a2(θ
(2)(t),X(2)(t), t)=a(t), the above two equations are simplified to

q1(f1, t)=q1(f1,0)+
∫ t

0
q1(A(1)f1, s)ds

+
n∑

j=1

∫ t

0

[
q1(f1p

(1)
j , s−)

q2(p
(2)
j , s−)

q2(1, s−)−q1(f1, s−)

]
dYj (s), (9)

q2(f2, t)=q2(f2,0)+
∫ t

0
q2(A(2)f2, s)ds

+
n∑

j=1

∫ t

0

[
q2(f2p

(2)
j , s−)

q1(p
(1)
j , s−)

q1(1, s−)−q2(f2, s−)

]
dYj (s). (10)

The proof of Theorem 3.1 is in [13] and that of Theorem 3.2 is [9].
Note that a(t) disappears in equations (6), (9) and (10). This reduces the
computation greatly in computing the Bayes estimates and Bayes factors.
The tradeoff of taking ai independent of (θ(k),X(k)) is that the relationship
between trading intensity and other parameters (such as stochastic volatil-
ity) is excluded.

Let the trading times be t1, t2, . . . , then, for example, equation (6) can
be written in two parts. The first is called the propagation equation, describ-
ing the evolution without trades and the second is called the updating equa-
tion, describing the update when a trade occurs. The propagation equation
has no random component and is written as

π(f, ti+1−)=π(f, ti)+
∫ ti+1−

ti

π(Af, s)ds. (11)
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This implies that when there are no trades, the posterior evolves
deterministically.

Assume the price at time ti+1 occurs at the j th price level, then the
updating equation is

π(f, ti+1)= π(fpj , ti+1−)

π(pj , ti+1−)
. (12)

It is random because the price level j , which is the observation, is random.
Similarly, Equations for Bayes factors can be written in such two parts.

3.2. A CONVERGENCE THEOREM AND RECURSIVE ALGORITHMS

Theorems 3.1 and 3.2 provide the evolutions of the continuous-time ver-
sions. To compute them, one constructs algorithms to approximate them.
The algorithms, based on the evolutions of SDEs, are naturally recur-
sive, handling a datum at a time. Thus, the algorithm can make real-time
updates and handle large data sets. One basic requirement for the recur-
sive algorithms is consistency: The approximate versions, computed by the
recursive algorithms, converges to the true ones. The following theorem
proves the consistency of the approximate versions and provides a rec-
ipe for constructing consistent algorithms through Kushner’s Markov chain
approximation methods.

For k =1,2, let (θ(k)
ε ,X(k)

ε ) be an approximation of (θ(k),X(k)). Then, we
define

�Y (k)
ε (t)=




N
(k)

1 (
∫ t

0 λ1(θ
(k)
ε (s),X(k)

ε (s), s)ds)

N
(k)

2 (
∫ t

0 λ2(θ
(k)
ε (s),X(k)

ε (s), s)ds)
...

N(k)
nk

(
∫ t

0 λn(θ
(k)
ε (s),X(k)

ε (s), s)ds)


 , (13)

set F �Y (k)
ε

t =σ( �Y (k)
ε (s),0�s � t), take L(k)

ε (t)=L((θ(k)
ε (s),X(k)

ε (s), Y (k)
ε (s))0�s�t )

as in equation(3), and use the notation, Xε ⇒ X, to mean Xε con-
verges weakly to X in the Skorohod topology as ε → 0. Suppose that
(θ(k)

ε ,X(k)
ε , �Y (k)

ε ) lives on (�(k)
ε ,F (k)

ε , P (k)
ε ), and Assumptions 2.1–2.5 also

hold for (θ(k)
ε ,X(k)

ε , �Y (k)
ε ). Then, there also exists a reference measure Q(k)

ε

with similar properties. Next, we define the approximations of φk(fk, t),
πk(fk, t), and qk(fk, t).

DEFINITION 3.6. For k =1,2, let
φε,k(fk, t)=EQ(k)

ε

[
fk

(
θ(k)
ε (t),X(k)

εx
(t)
)
L(k)

ε (t)|F �Y (k)
ε

t

]
,

πε,k(fk, t)=EP (k)
ε

[
fk

(
θ(k)
ε (t),X(k)

εx
(t)
)|F �Y (k)

ε

t

]
,

qε,1(f1, t)=φε,1(f1, t)/φε,2(1, t) and qε,2(f2, t)=φε,2(f2, t)/φε,1(1, t).
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THEOREM 3.3. Suppose that Assumptions 2.1–2.5 hold for the models
(θ(k),X(k), �Y (k))k=1,2 and that Assumptions 2.1–2.5 hold for the approximate
models (θ(k)

ε ,X(k)
ε , �Y (k)

ε ). Suppose (θ(k)
ε ,X(k)

ε )⇒ (θ(k),X(k)) as ε →0. Then, as
ε →0, for all bounded continuous functions, f1 and f2, and k =1,2,

(i) �Y (k)
ε ⇒ �Y (k); (ii) φε,k(fk, t) ⇒ φk(fk, t); (iii) πε,k(fk, t) ⇒ πk(fk, t); (iv)

qε,1(f1, t)⇒q1(f1, t) and qε,2(f2, t)⇒q2(f2, t) simultaneously.

The proofs for (i) and (iii) are in [13] and those for (ii) and (iv) are in
[9]. Another short proof of the whole theorem is provided in [14].

Part (ii) implies the consistency of the integrated likelihood, part (iii)
implies the consistency of posterior and part (iv) implies the consistency of
the Bayes factors.

This theorem provides a three-step recipe for constructing a consis-
tent recursive algorithm based on Kushner’s Markov chain approximation
method to compute the continuous-time versions. For example, to com-
pute the posterior and Bayes estimates for a model (then the superscript,
“(k)” is excluded), step 1 is to construct (θε,Xε), the Markov chain approx-
imation to (θ,X), and obtain pε,j = p(yj |θε, xε) as an approximation to
pj = p(yj |θ, x), where (θε, xε) is restricted to the state space of (θε,Xε).
Step 2 is to obtain the filtering equation for πε(f, t) corresponding to
(θε,Xε, Yε,pε,j ) by applying Theorem 3.1. For simplicity, one only consid-
ers the case when a=a(t). Similar to Remark 3.9, the filtering equation for
the approximate model can be separated into the propagation equation:

πε(f, ti+1−)=πε(f, ti)+
∫ ti+1−

ti

πε(Aεf, s)ds (14)

and the updating equation (assuming that a trade at j th price level occurs
at time ti+1):

πε(f, ti+1)= πε(fpε,j , ti+1−)

πε(pε,j , ti+1−)
. (15)

Step 3 converts equations (14) and (15) to the recursive algorithm in dis-
crete state space and time by two substeps: (a) represents πε(·, t) as a finite
array with the components being πε(f, t) for lattice-point indicator f and
(b) approximates the time integral in (14) with an Euler scheme.

4. An Example with Simulation and Real Data Results

This section illustrates how to develop a specific micromovement model
and how to construct a recursive algorithm. Simulation and real-data
examples are supplied.
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4.1. A SPECIFIC MICROMOVEMENT MODEL

Since it is intuitive to construct the model, it is presented constructively.
Recall that there are three steps. First, X(t), is assumed to be JSV-LBM,
or in SDE form:

dX(t)=µdt +σ(t)dW(t), dσ(t)= (JN(t−)+1 −σ(t−)
)
dN(t), (16)

where W(t) is a standard Brownian motion, N(t) is a Poisson process with
intensity λ and is independent of W(t), and {Ji} is a sequence of i.i.d. ran-
dom variables independent of W(t) and N(t). We further assume that each
Ji is uniformly distributed on a range, [ασ ,βσ ]. Suppose that the ith Pois-
son event happens at time ti and Ji is drawn. Then, the volatility changes
from σ(ti−1) to Ji at time ti (because σ(ti) = (Ji − σ(ti−1)) + σ(ti−)), and
then remains the same until the next Poisson event occurs. The generator
is

Af (σ, x)=µ
∂f

∂x
(σ, x)+ 1

2
σ 2 ∂2f

∂x2
(σ, x)

+λ

∫ βσ

ασ

(
f (z, x)−f (σ, x)

) 1
βσ −ασ

dz.

Second, the trading intensity is assumed to be deterministic. Then, a(t)

drops out in the normalized filtering equation for posterior and the evo-
lution equations for Bayes factor. A time-dependent deterministic intensity
a(t) fits the data of trade duration better than the time-invariant one since
trading activity is higher in the opening and the closing periods.

Lastly, we incorporate the trading noises on the intrinsic values at trad-
ing times to obtain the price process. There are three important types of
noise have been identified and extensively studied: discrete, clustering, and
non-clustering. First, intraday prices move discretely, resulting in “discrete
noise”, because the tick size, $1/M, is set by trading regulation. Second,
because prices do not distribute evenly on all ticks, but cluster on inte-
ger and half ticks, “price clustering” is obtained. Third, the distribution
of price changes (the difference between the current price and the lat-
est previous price) and the outliers in prices show the existence of the
“non-clustering noise”, which includes all other unspecified noise. To sim-
plify notation, at a trading time ti , set x =X(ti), y =Y (ti), and y ′ =Y ′(ti)=
R[X(ti) + Vi,1/M], where Vi is to be defined as the non-clustering noise.
Instead of directly specifying p(y|x), we define y =F(x) in three steps:

Step 1. Incorporate non-clustering noise by adding V ; x ′ =x +V , where V

is the non-clustering noise of trade i at time ti . We assume {Vi}, are
independent of the value process, and they are i.i.d. with a doubly
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geometric distribution:

P {V =v}=
{

(1−ρ) if v =0,
1
2(1−ρ)ρM|v| if v =± 1

M
,± 2

M
, · · ·

Step 2. Incorporate discrete noise by rounding off x ′ to its closest tick, y ′ =
R[x ′,1/M].

Step 3. Incorporate clustering noise by biasing y ′ through a random bias-
ing function b(·). {bi(·)} is assumed independent of {y ′

i}. To be con-
sistent with the data analyzed in Section 4.4, we construct a simple
random biasing function only for the tick of 1/8 dollar (i.e. M =8).
The data to be analyzed has this clustering phenomenon: integers
and halves are most likely and have about the same frequencies;
odd quarters are the second most likely and have about the same
frequencies; and odd eighthes are least likely and have about the
same frequencies. To generate such clustering, a random biasing
function is constructed based on the following rules: if the frac-
tional part of y ′ is an even eighth, then y stays on y ′ with proba-
bility one; if the fractional part of y ′ is an odd eighth, then y stays
on y ′ with probability 1−α −β, y moves to the closest odd quar-
ter with probability α, and moves to the closest half or integer with
probability β.

In summary, the construction of the price from the value at a trading
time is

Y (ti)=bi

(
R

[
X(ti)+Vi,

1
M

])
=F(X(ti)).

In this way, the random transformation, F(x), which models the impact
of trading noise, is specified. The detail of b(·), and the explicit transi-
tion probability p(y|x) of F can be found in Appendix A. Simulations can
demonstrate that the constructed F(x) are able to capture the tick-level
sample characteristics of transaction data for more details see [13].

When the value process is JSV-GBM, the model is studied in [14]. For
different tick size M, the modeling of trading noise is different and we can
generalize the above modeling to other ticks such as 1/16 or 1/100$. A
more complicated F for 1/16 is constructed in [12]. Larger M may increase
the number of lattice for the state space of X and thus increases the com-
puatation of the recursive algorithm. The parameters of clustering noise,
α and β, can be estimated through the method of relative frequency. The
other parameters, µ,σ(t), λ and ρ, are estimated by Bayes estimation via
filtering through the recurisve algorithm to be constructed.
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4.2. THE RECURSIVE ALGORITHM FOR BAYES ESTIMATION

Following the three-step recipe provided by Theorem 3.3, we apply the
Markov chain approximation method to construct a consistent algorithm in
discrete state space and time to calculate the posteriors and Bayes estimates
recursively.

Step 1. Construct a Markov chain, (θε(t),Xε(t)) as an approximation to
(θ(t),X(t)). Here, θ(t)= (µ,σ (t), λ, ρ), which is time-dependent.

First, applying an important idea in Bayesian analysis for latent variables,
we treat the unknown parameters as part of the unobserved signal. Then,
we discretize the parameter spaces of µ,λ,ρ and the state spaces of σ(t)

and X(t). Suppose there are nµ + 1, nσ + 1, nλ + 1, nρ + 1 and nx + 1 lat-
tices in the discretized spaces of µ, σ , λ, ρ and X, respectively. For exam-
ple, the discretization for µ in [αµ,βµ] is {αµ,αµ + εµ,αµ + 2εµ, . . . , αµ +
jεµ, . . . , αµ +nµεµ} where αµ +nµεµ =βµ. Define µj =αµ +jεµ, the j th lat-
tice in the discretized parameter space of µ. Similarly, define σk = σk(t) =
ασ + kεσ , λl = αλ + lελ, ρm = αρ + mερ , xw = xw(t) = αx + wεx , and let ε =
max(εµ, εσ , ελ, ερ, εx). The discretized space of (µ,λ, ρ) is a natural approx-
imation for the parameter space. But, Markov chain is a natural approxi-
mation for the stochastic processes (σ (t),X(t)).

Second, we observe that the construction of a Markov chain approxima-
tion can be achieved by constructing a Markov chain with generator, Aε,
such that Aε →A as ε →0. Accommodating other parameters, the genera-
tor of the model becomes

Af (µ,σ, λ, ρ, x)=µ
∂f

∂x
(µ,σ, λ, ρ, x)+ 1

2
σ 2 ∂2f

∂x2
(µ,σ, λ, ρ, x)

+λ

∫ βσ

ασ

(
f (µ, z, λ, ρ, x)−f (µ,σ, λ, ρ, x)

) 1
βσ −ασ

dz. (17)

The generator can be decomposed into two parts: one part is a diffusion
generator involving first- and second-order differentiation and the other is a
jump generator involving integration. The finite difference approximation is
applied for differentiation and the rectangle approximation for integration.
One constructs Aε as follows:

Aεf (µj , σk, λl, ρm, xw)

=µj

(f (µj , σk, λl, ρm, xw + εx)−f (µj , σk, λl, ρm, xw − εx)

2εx

)

+1
2
σ 2

k

(f (µj , σk, λl, ρm, xw + εx)+f (µj , σk, λl, ρm, xw − εx)

ε2
x

)

−1
2
σ 2

k

(2f (µj , σk, λl, ρm, xw)

ε2
x

)
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+λl

nσ∑
i=0

(
f (µj , σi, λl, ρm, xw)−f (µj , σk, λl, ρm, xw)

) 1
nσ +1

=b(µj , σk, xw)(f (µj , σk, λl, ρm, xw + εx)−f (µj , σk, λl, ρm, xw))

+d(µj , σk, xw)(f (µj , σk, λl, ρm, xw − εx)−f (µj , σk, λl, ρm, xw))

+λl

(
f̄ (µj , λl, ρm, xw)−f (µj , σk, λl, ρm, xw)

)
, (18)

where

b(µj , σk, xw)= 1
2

(
σ 2

k

ε2
x

+ µj

εx

)
, d(µj , σk, xw)= 1

2

(
σ 2

k

ε2
x

− µj

εx

)

and

f̄ (µj , λl, ρm, xw)= 1
nσ +1

nσ∑
i=0

f (µj , σi, λl, ρm, xw).

Note that b(µj , σk, xw) and d(µj , σk, xw) are birth and death rates,
which should be kept nonnegative by making εx sufficiently small. f̄ (µj , λl,

ρm, xw) is the mean of f on σ with fixed (µj , λl, ρm, xw).
We can choose the range for each component large enough so that the

transition probability to anything outside the range is negligible. Then, the
generators, Aε, characterizes the continuous-time Markov chain satisfying
Assumption 2.5. After having the discretized state space, we obtained pε,j =
p(yj |θε, xε) subsequently.

Step 2. Obtain the normalized filtering equation for the approximate
model. When (θ,X) is replaced by (θε,Xε), A by Aε, �Y by �Yε, pj

by pε,j and there also exists a probability measure Pε to replace
P , then Assumptions 2.1–2.5 also hold for (θε,Xε, �Yε). Hence,
the filtering equation is obtained in equations (14) and (15) using
Theorem 3.1.

The procedure hitherto brings forth πε(f, t), which is the discretized
approximation of π(f, t). Let (µε, σε, λε, ρε,Xε) denote the discretized sig-
nal.

DEFINITION 4.1. Let πε,t be the conditional probability mass function of
(µε, σε(t), λε, ρε,Xε(t)) on the discrete state space given F �Yε

t . Let

πε(f, t)=EPε [f (µε, σε(t), λε, ρε,Xε(t)) |F �Yε

t ]

=
∑

µ,σ,λ,ρ,x

f (µ,σ, λ, ρ, x)πε,t (µ, σ, λ, ρ, x),

where the summation goes over all lattices in the discretized state spaces.
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Step 3. Convert equations (14) and (15) to the recursive algorithm. First,
we define the approximate posterior that the recursive algorithm
computes.

DEFINITION 4.2. The posterior of the approximate model at time t is
denoted by

pε(µj , σk, λl, ρm, xw; t)

=πε,t{µε =µj, σε(t)=σk, λε =λl, ρε =ρm,Xε(t)=xw }.
Then, there are two substeps. The core of the first substep is to take f

as the following lattice-point indicator function:

I{µε=µj ,σε(t)=σk,λε=λl,ρε=ρm,Xε(t)=xw}(µε, σε(t), λε, ρε,Xε(t))

def= I(µj , σk, λl, ρm, xw). (19)

Then, the following fact emerges:

πε

(
b(µε, σε(t),Xε(t))I(µj , σk, λl, ρm, xw + εx), t

)

=b(µj , σk, xw−1)pε(µj , σk, λl, ρm, xw−1; t).

Along with similar results, πε(AεI, t) in equation (14) becomes explicit and
equation (14) becomes

pε(µj , σk, λl, ρm, xw; ti+1−)

=pε(µj , σk, λl, ρm, xw; ti)

+
∫ ti+1−

ti

(
b(µj , σk, xw−1)pε(µj , σk, λl, ρm, xw−1; t)

−(b(µj , σk, xw)+d(µj , σk, xw))pε(µj , σk, λl, ρm, xw; t)

+d(µj , σk, xw+1)pε(µj , σk, λl, ρm, xw+1; t)

+λl

(
p̄(µj , λl, ρm, xw; t)−p(µj , σk, λl, ρm, xw; t)

))
dt, (20)

where

p̄(µj , λl, ρm, xw; t)= 1
nσ +1

nσ∑
i=0

p(µj , σi, λl, ρm, xw; t).

If a trade at kth price level occurs at time ti+1, the updating equation
(15) can be written as,

pε(µj , σk, λl, ρm, xw; ti+1)

= pε(µj , σk, λl, ρm, xw; ti+1−)p(yk|xw,ρm)∑
j ′,k′,l′,m′,w′ pε(µj ′, σk′, λl′, ρm′, xw′ ; ti+1−)p(yk|xw′, ρm′)

, (21)
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where the summation goes over the total discretized space, and p(yk|xw,ρm),
the transition probability from xw to yk, is specified by equation (A2) in
Appendix A.

In the second substep, we approximate the time integral in equation (20)
with an Euler scheme to obtain a recursive algorithm further discrete in
time. After excluding the probability-zero event that two or more jumps
occur at the same time, there are two possible cases for the inter-trading
time. Case 1, if ti+1 − ti � LL, the length controller in the Euler scheme,
then we approximate p(µj , σk, λl, ρm, xw; ti+1−) as

p(µj , σk, λl, ρm, xw; ti+1−)

≈p(µj , σk, λl, ρm, xw; ti)

+
[
b(µj , σk, xw−1)p(µj , σk, λl, ρm, xw−1; ti)

−(b(µj , σk, xw)+d(µj , σk, xw)
)
p(µj , σk, λl, ρm, xw; ti)

+d(µj , σk, xw+1)p(µj , σk, λl, ρm, xw+1; ti)

+λl

(
p̄(µj , λl, ρm, xw; t)−p(µj , σk, λl, ρm, xw; t)

)]
(ti+1 − ti). (22)

Case 2, if ti+1 − ti > LL, then we can choose a fine partition {ti,0 =
ti , ti,1, . . . , ti,n = ti+1} of [ti , ti+1] such that maxj |ti,j+1 − ti,j | < LL and then
approximate p(µj , σk, λl, ρm, xl; ti+1−) by applying repeatedly equation (22)
from ti,0 to ti,1, then ti,2,. . . , until ti,n = ti+1.

Equations (21) and (22) consist of the recursive algorithm we employ
to calculate the approximate posterior at time ti+1 for (µ,σ (ti+1), λl, ρ,
X(ti+1)) based on the posterior at time ti . At time ti+1, the Bayes estimates
of µ, σ(ti+1), λ, ρ and X(ti+1) are the means of the corresponding marginal
posteriors.

Finally, we choose a reasonable prior. The Bayesian paradigm allows us
to actively incorporate prior information such as researchers past experi-
ence, personal intuition, or expert opinion. Assume independence between
X(0) and (µ,σ (0), λ, ρ). The prior for X(0) can be set by P {X(0) =
Y (t1)} = 1, where Y (t1) is the first trade price of a data set because they
are very close. For other parameters, in the case that no prior informa-
tion is available, we can simply assign noninformative priors on the param-
eters, namely, assign uniform distributions to the discretized state space of
(µ,σ (0), λ, ρ) and obtain the prior, which is used in the rest of this section,
at t =0 as,

p(µj , σk, λl, ρm, xw; 0)=
{ 1

(1+nµ)(1+nσ )(1+nλ)(1+nρ)
if xw =Y (t1),

0 otherwise.
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4.2.1. Consistency of the Recursive Algorithm

There are two approximations in the construction of the recursive algo-
rithm. The second is to approximate the time integral in the propagation
equation (14) by Euler scheme, whose convergence is well-known. The first,
more important one is the approximation of the filtering equations (11) and
(12) by equations (14) and (15) of the approximate model. Since (θε,Xε)⇒
(θ,X) by construction, Theorem 3.3 guarantees the weak convergence of
the filtering equation of the approximate model to that of the assumed
model.

4.3. A SIMULATION EXAMPLE

A Fortran program for the recursive algorithm is constructed to calcu-
late, at each trading time ti , the joint posterior of (µ,σ (t), λ, ρ,X(t)), their
marginal posteriors, their Bayes estimates and their standard errors (SE),
respectively. The recursive algorithm for computing the Bayes factors is fast
enough to generate real-time Bayes estimates. The algorithm is extensively
tested and validated on simulated data. In the simulation, we know the true
posterior. We run the Fortran program through simulated data and calcu-
late the approximate posteriors. By comparing the approximate posteriors
with the true one, we can choose the appropriate ε in the discretizations
of the state spaces. Also simulation studies suggest that the posterior is not
sensitive to the prior. Namely, for reasonable priors, as long as the range
covers the true values and the lattices are reasonably fine, the Bayes esti-
mates will converges to the true values. One simulation example is provided
to demonstrate the effectiveness of Bayes estimates, especially for stochastic
volatility.

For time-invariant parameters (µ,λ, ρ), they converge to their true val-
ues and the two-SE bounds become smaller and smaller, and goes to zero
as in the case of GBM in Zeng [13]. Hence, only the final Bayes esti-
mates, their SE, and true values are presented in Table II. The true values
are close to the Bayes estimates and all within two SE bounds. Estimating
stochastic volatility is the focus. Figure 1 shows how the Bayes estimates
of volatility evolve in comparison of the time-varying true volatilities, σ(t),
for all 70,000 simulated data. Overall, we see that the Bayes estimates of
volatility are close to their true values, which are within the two SE bounds
most of time. The Bayes estimates can catch up with the movement, as the
true volatility changes.

4.4. A REAL DATA EXAMPLE

The tested recursive algorithm is applied to a two-month (January and
February, 1994, 40 business days) transaction data set of Microsoft. The
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Figure 1.

Table II. Final Bayes estimates of SVJ-LBM: 70,000 simulated data.

Final Bayes estimates Summary of σ

Parameters µ σ λ ρ Mean St.Dev. Median

True Value 760.5 4.20 228.15 0.20 13.68 6.06 15.97
Bayes Est. 499.43 9.51 301.14 0.2017 14.81 5.62 17.22
SE (156.14) (7.23) (46.89) (0.0015)

data are extracted from the Trade and Quote (TAQ) database distributed
by NYSE. We apply standard procedures to filter the data. The final
sample has 49,937 observations with a minimum $78, a maximum $87, and
a mean $82.38.

Based on the relative frequencies of the fractional parts of price, we use
the method of relative frequencies to estimate α = 0.2414, and β = 0.3502.
The empirical distribution of trade waiting times does not support a pure
exponential distribution for duration, but does support a mixed exponential
distribution, which is consistent with the assumption that the total trading
intensity, a(t), can depend on time. The mean duration is 18.63 s with a
standard error 30.01 s.

For comparison, the recursive algorithm for the simple model with
straight LBM as the value process incorporated with the same noises
described in Section 4.1 is applied to the same data set to obtain Bayes
estimates. Assuming 260 business days per year, the annualized estimates
are obtained. Final Bayes estimates of both models for the same Microsoft
data are summarized in Table III. For JSV-LBM, the jump intensity, λ, is
3964.30, which means there are 3964.30 changes in volatility annually, or
15.25 times daily. It is observed that intraday volatility has “U-shaped” :
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Table III. Final Bayes estimates: MSFT data.

Final Bayes est. Summary of σ

Models µ σ λ ρ Mean St.Dev. Median

JSV-LBM $16.26 $15.20 3964.30 0.2046 $29.07 $ 16.44 $24.48
($32.71) ($12.12) (433.74) (0.0036)

LBM $13.44 $21.76 NA 0.2264
($53.96) ($0.26) NA (0.0023)

higher volatility in opening and closing periods of the market. So volatility
changes at least twice a day. The large λ is consistent with this observation
and indicates the volatility changes even more frequent within the trad-
ings of a day. The parameter for non-clustering noise, ρ, is reduced in
JSV-LBM, probably due to more price variation is explained by stochastic
volatility.

Figure 2 shows how the Bayes estimates of the volatilities for JSV-LBM
and LBM evolve and demonstrate how different the volatility estimates are
for the two models. In LBM, the volatility is assumed to be constant, and
its estimates tend to be stable and fail to capture the movement of volatil-
ity. In JSV-GBM, the stochastic volatility feature in the Microsoft data is
clearly demonstrated. This is also clearly confirmed by the empirical result
according to the Bayesian model selection via filtering in Section 4.5. To
avoid crowdedness in picture, Figure 3 presents only the last 1000 Bayes
estimates of volatility for JSV-LBM and their estimated two-SE bounds. We
can see the volatility estimates varies greatly. Sometimes it moves continu-
ously and sometimes it jumps just as the model of suggests.

Figure 2.
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Figure 3.

4.5. A BRIEF EXAMPLE FOR BAYESIAN MODEL SELECTION

We consider a model selection problem between two micromovement mod-
els: Model 1 is just the simple micromovement model based on straight
LBM incorporated with the same noises described in Section 4.1 (more
details and estimation results of the model are in [15]). Model 2 is the
model based on JSV-LBM. For the trading intensity functions, we assume
both of them are deterministic. In the model selection setup, we take
a1(t)=a2(t)=a(t) because both models are for the same asset and the same
data set. As shown in equations (9) and (10), a(t) drops out in the evolu-
tion equations of Bayes factor.

Similarly to the construction of recursive algorithm for Bayes estima-
tion, a recursive algorithm can be constructed to compute the Bayes factors
of Model 2 over Model 1 and of Model 1 over Model 2. For the detail of
how to construct such a recursive algorithm and the effectiveness of Bayes
factor for the model selection of this class of micromovement models, inter-
ested readers are referred to [9]. The recursive algorithm is applied to the
same Microsoft data set to obtain the Bayes factor of Model 2 over Model
1. Although the calculated Bayes factor of JSV-LBM vs. LBM fluctuates,
it has an exponential trend of growth and is already 9.019×105 at the end
of first day (at the 826 datum), which is much larger than 150, the deci-
sive banchmark against Model 1. This clearly demonstrates that there are
volatility changes within one trading day and is consistent with the empiri-
cal finding of higher volatility in opening and closing periods of the market
sessions.

5. Conclusions

This paper highlights recent development of a rich class of counting
process models for the micromovement of asset price and the Bayesian
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inference via filtering for the class of models. A specific micromovement
model built upon JSV-LBM is used to demonstrate the procedure to
develop a micromovement model with specific tick-level sample characteris-
tics, and further demonstrate the procedure to implement Bayes estimation
via filtering with simulation and real-data examples. A further important
topic for research is on how to assess the model fit formally.

The applications of the class of micromovement models and its con-
tinuous-time Bayesian inference via filtering is not just mere to obtain
trade-by-trade Bayes parameter estimates, nor to show stochastic volatil-
ity matters, but rather to provide a general framework for modeling price
micromovement with powerful Bayesian inference. The general model pro-
vides strong potential to relate or illuminate aspects of the rich theoretical
literiture on market microstructure and trading mechanism. Furthermore,
Bayesian model selection via filtering provides a general, powerful tool to
test related market microstructure theories, represented by the micromove-
ment models. We may test whether NASDAQ has less trading noise after
a market reform as in Barclay et al. [1] (see [11]), test whether information
affects trading intensity as in Easley and O’Hara [4] and Engle [5].
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Appendix A: More on Modeling Clustering Noise

To formulate the biasing rule, we first define a classifying function r(·),

r(y)=



3 if the fractional part of y is odd eighth,

2 if the fractional part of y is odd quarter,
1 if the fractional part of y is a half or zero.

(A1)

The biasing rules specify the transition probabilities from y ′ to y,
p(y|y ′). Then, p(y|x), the transition probability can be computed through
p(y|x)=∑y ′ p(y|y ′)p(y ′|x) where p(y ′|x)=P {V = y ′ −R[x,1/8]}. Suppose
D = 8|y −R[x,1/8]|. Then, p(y|x) can be calculated as, for example, when
r(y)=1,

p(y|x)=




(1−ρ)(1+βρ) if r(y)=1 and D =0,
1
2(1−ρ)[ρ +β(2+ρ2)] if r(y)=1 and D =1,

1
2(1−ρ)ρD−1[ρ +β(1+ρ2)] if r(y)=1 and D �2.

(A2)
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