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Estimating Stochastic Volatility via Filtering for the
Micromovement of Asset Prices

Yong Zeng

Abstract—Under the general framework of a previous paper, a
unified approach via filtering is developed to estimate stochastic
volatility for micromovement models. The key feature of the
models is that they can be transformed as filtering problems with
counting process observations. In order to obtain trade-by-trade,
real-time Bayes estimates of stochastic volatility, the Markov
chain approximation method is applied to the filtering equation
to construct a consistent recursive algorithm, which computes
the joint posterior. To illustrate the approach, a recursive algo-
rithm is constructed in detail for a jumping stochastic volatility
micromovement model. Simulation results show that the Bayes
estimates for stochastic volatilities capture the movement of
volatility. Trade-by-trade stochastic volatility estimates for a
Microsoft transaction data set are obtained and they provide
strong affirmative evidence that volatility changes even more
dramatically at trade-by-trade level.

Index Terms—Counting process, filtering, high-frequency data,
Markov chain approximation, stochastic volatility.

I. INTRODUCTION

STOCHASTIC volatility is well documented for asset
prices in both macromovement and micromovement [2].

Macromovement refers to daily, weekly, and monthly closing
price behavior while micromovement refers to transactional
(trade-by-trade) price behavior. There is a strong connection as
well as striking distinctions between the macro and micromove-
ments. The strong connection is observed through the identity
of the overall shapes of both, because the macromovement is
an equally spaced time series drawn from the micromovement
data. Their striking distinctions are mainly due to financial
noise. In macromovement, the impact of noise is small and is
usually neglected. In micromovement, however, the impact of
noise is substantial and noise must be modeled explicitly. If
the noise is ignored, then the impact of noise is transferred to
volatility, and the volatility estimates are substantially inflated.
This is documented by [8], [1], and [4] for discrete noise and
further in [9] and [18] for discrete plus other types of noise.

Economically, the asset price is distinguished from its in-
trinsic value and this distinction is also noise. Noise, as con-
trasted with information, is well-documented in the market mi-
crostructure literature. Three important types of noise have been
identified and extensively studied: discrete, clustering and non-
clustering. First, intraday prices move discretely (tick by tick),

Manuscript received October 15, 2002; revised November 15, 2003. Recom-
mended by Guest Editor B. Pasik-Duncan. This work supported in part by a
Faculty Research Grant of the University of Missouri at Kansas City.

The author is with Department of Mathematics and Statistics, University
of Missouri at Kansas City, Kansas City, MO 64110 USA (e-mail: zeng@
mendota.umkc.edu).

Digital Object Identifier 10.1109/TAC.2004.824478

resulting in “discrete noise.” Second, because prices do not dis-
tribute evenly on all ticks, but gather more on some ticks such as
integers and halves, “price clustering” is obtained. [10] confirms
that this phenomenon is remarkably persistent through time,
across assets, and across market structures. Third, the “nonclus-
tering noise” includes other unspecified noise, and the outliers
in prices are one of the evidence for the existence of nonclus-
tering noise.

In [18], a novel, economically well-grounded, partially
observed micromovement model for asset price is proposed to
bridge the gap between the macro and micro movements caused
by noise. The most prominent feature of the proposed model is
that it can be formulated as a filtering problem with counting
process observations. This connects the model to the filtering
literature, which has found great success in engineering and
networking. Under this framework, the observables are the
whole sample paths of the counting processes, which contain
the complete information of price and trading time. Then,
the continuous-time likelihoods and posterior, built upon the
sample paths, not only exist, but also are uniquely characterized
by the unnormalized, Duncan–Mortensen–Zakai (DMZ)-like
filtering equation, and the normalized, Kushner–Stratonovich
(KS) (or Fujisaki–Kallianpur–Kunita)-like filtering equations
respectively.

Transaction (or tick) data are discrete in value, irregularly
spaced in time and extremely large in size. Despite recent
advances in statistics and econometrics, obtaining “reliable”
parameter estimates for even simple, nonstochastic volatility,
micromovement models is extremely challenging. Contrasted
with [5], [18] develops continuous-time Bayes estimation via
filtering with efficient algorithms for the parameter estimation
of the micromovement model. That represents a significant
advance in the estimation for micromovement models, also
because the continuous-time likelihoods and posterior are
utilized as the foundation for statistical inference. This foun-
dation is informationally better than those provided by the
discrete-time likelihoods and posterior, which merely make use
of a discrete-time subset of the sample paths. In [18], however,
only the parameters of a simple model with GBM as value
process is estimated.

In this paper, first, a class of stochastic volatility micro-
movement models is developed from the macromovement
models by incorporating the three types of noise mentioned.
A new, jumping stochastic volatility (JSV) micromovement
model, stemming from geometric Brownian motion (GBM),
is proposed and studied (later, it is called the JSV-GBM
micromovement model). Second, a unified approach, Bayes
parameter estimation via filtering, is developed for the mi-
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cromovement models, especially for estimating stochastic
volatility. Stochastic volatility models are more realistic and
more interesting but more difficult to estimate than the simple
model with GBM as value process, where the parameters,
the signal of interest, are fixed. In stochastic volatility model,
estimation becomes a “real” filtering problem: the stochastic
volatility, the signal of interest, changes over time and the stock
prices are the observations corrupted by discrete types of noise.

The JSV-GBM model is employed to demonstrate the
effectiveness of estimating stochastic volatility using Bayes
estimation via filtering. To illustrate the approach, JSV-GBMs
consistent recursive algorithm, which approximates the nor-
malized filtering equation and calculates the joint posterior, is
constructed in detail. Simulation results show that the Bayes
estimates for stochastic volatilities are close to their true
volatilities, and are able to capture the movement of volatility.
Trade-by-trade volatility estimates for an actual transaction
data set are computed and they confirm that the volatility
changes even more dramatically in micromovement.

The rest of the article proceeds as follows. Section II presents
the class micromovement models with stochastic volatility.
Section III develops the unified approach, Bayes estimation via
filtering, for the proposed models and the recursive algorithm
of JSV-GBM is constructed in detail as an illustration of
the approach. Section IV presents simulation and estimation
results based on actual data. Concluding remarks are offered in
Section V.

II. STOCHASTIC VOLATILITY MICROMOVEMENT MODELS

The micromovement model is built upon the macromove-
ment model, or, economically, the price is built upon the in-
trinsic value by incorporating noise. Suppose that the intrinsic
value process can not be observed directly, but can be par-
tially observed through the price process, . lives in a con-
tinuous state–space while lives in a discrete state–space given
by the multiples of the minimum price variation, a tick, which
is assumed to be . The combination of provides a
natural partially observed framework for the micromovement
process. So, we start with stochastic volatility models for value
process.

A. Stochastic Volatility Models for Value Process

Suppose is a vector of parameters in the model. is
augmented to in preparation for parameter estimation,
and the following assumption is invoked on as in [18].

Assumption 2.1: is the solution of a martingale
problem for a generator such that

is a -martingale, where is the -algebra generated
by .

Remark 2.1: This is a very general assumption including
many stochastic volatility models and even more. Three exam-
ples are given later.

Example 2.1: Hull and White’s [13] model in SDE form is

where and and are Weiner processes
with correlation coefficient . Its generator is

The parameters of this model are . If is al-
lowed to be a nice function that can depend on , then this
model can include another stochastic volatility model—the lim-
iting diffusion model of AR(1)EARCH model [16].

Example 2.2: Heston’s [12] model in SDE form is

where , and are defined in Example 2.1. Its
generator is

This model has parameters .
The following example presents a new JSV-GBM model

for value process. Its micromovement version is developed in
Section II-B and is further specified in Section III-B.

Example 2.3: (JSV-GBM) A jumping stochastic volatility
model in SDE form is

where is a Poisson process with intensity , and
is a sequence of i.i.d. random variables with a density ,
and is assumed to be independent of and . When
the th Poisson event happens at time , the volatility changes
from , which is , to , because

. Then, the volatility remains the same
until the next Poisson event occurs. Its generator is

The parameters of this model are and may include pa-
rameters in if they exist. This model is closely related to the
asset price models with Markov modulated volatilities studied
by [6].

After specifying the value process , there are two equiv-
alent methods to build the price process from . The first
constructs from by incorporating noises. The second for-
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mulates as a filtering problem with counting process ob-
servations. The former approach is intuitive, while the latter ap-
proach is important for parameter estimation.

B. Building Price Process by Construction

Since prices can only be observed at irregularly spaced
trading times, there are two steps in constructing from .
First, determine trading times which are
assumed to be modeled by a conditional Poisson process. The
rate of trading activity is described by an intensity function,
denoted by . Second, , the price at time

, is constructed from via a random function .
That is, , where is a random
transformation with the transition probability .

Under this construction, the observable price is produced
from the value process by combining noises when a trade
occurs. The model has a desirable structure as in [11]: Infor-
mation affects , the value of an asset, and has a permanent
influence on the price, while noise affects , the random
transition function, and only has a transient impact on price.

This article focuses on estimating this class of micromove-
ment stochastic volatility models: the value process, ,
is a continuous-time stochastic volatility model which can
be formulated as a martingale problem, the trading times

are driven by a conditional Poisson process,
and the price at time is . The advantage of
these models is that they not only have stochastic volatility, but
also can capture the micromovement features created by noise.
Later, a simple is built to accommodate the three types
of noise that are well-documented in the financial literature:
discrete noise, clustering noise, and nonclustering noise.

To simplify notation, fix and set , and
, where is defined as

the nonclustering noise. Instead of directly specifying
of , we move the value to the price in three steps.

Step 1) Incorporate discrete noise by rounding off to its
closest tick, . Without other noises,
trades should occur at this tick, which is closest to
the stock value.

Step 2) Incorporate nonclustering noise by adding
, where is the nonclustering noise

of trade at time .
We assume , are independent of the value

process, and they are i.i.d. with a doubly geometric
distribution

if
if

Step 3) Incorporate clustering noise by biasing . After
rounding the value process and adding nonclus-
tering noise, the fractional part of should still be
approximately uniformly distributed. Here, I bias
through a random biasing function to reflect
price clustering. are assumed independent
of and serially independent given the sequence

.

To be consistent with the data analyzed in Section IV, I con-
struct a simple random biasing function only for the tick of
dollar. It can be generalized to other ticks such as dollar
easily. Although, since 2000, the trading tick has been converted
to decimal system, but this does not change the validity of the
proposed model.

The data to be analyzed has this clustering phenomenon:
integers and halves are most likely and have about the same
frequencies; odd quarters are the second most likely and have
about the same frequencies; and odd eighths are least likely and
have about the same frequencies. To generate such clustering, a
random biasing function is constructed based on the following
rule: If the fractional part of is even eighths, then stays
on with probability one; if the fractional part of is odd
eighth, then stays on with probability moves
to the closest odd quarter with probability , and moves to the
closest half or integer with probability . The detail of is
presented in Appendix A.

In summary, the construction is

In this way, the random transformation, , which models the
impact of financial noise, is specified. The transition probability

of can be computed and the explicit is given
in Appendix A.

C. Filtering With Counting Process Observations

In the general construction, we view the prices in the order of
trading occurrence over time. Alternatively, we can view them
in the levels of price. That is, we view the prices as a collection
of counting processes in the following form:

...

(1)

where is the counting
process recording the cumulative number of trades that have oc-
curred at the th price level (denoted by ) up to time .

Under this representation, becomes the signal
process, which cannot be observed directly, and becomes
the observation process, which is corrupted by noise, modeled
by . Hence, is framed as a filtering problem
with counting process observations.

Four mild assumptions are invoked so that the general con-
struction is equivalent in distribution to the counting process ob-
servations in (1). The equivalence ensures that Bayes estimation
based on the latter specification can be applied to the former.

Assumption 2.2: ’s are unit Poisson processes under the
physical measure .

Assumption 2.3: are independent
under the physical measure .

Assumption 2.4: The intensity,
, where is the total intensity at time and
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is the transition probability from to , the th price
level.

Assumption 2.5: The total intensity, , is uniformly
bounded above, i.e., there exist a constant, , such that

for all , and .
Remark 2.2: These four assumptions imply that there ex-

ists a reference measure and that after a suitable change of
measure to will become independent, and

will become unit Poisson processes. These two
assumptions are general since a large class of counting processes
can be transformed into this setup by the technique of change of
measure (see [3, p. 165]).

Remark 2.3: Assumption 2.4 imposes a desirable structure
for the intensities of the model. It means that the total trading
intensity determines the overall rate of trade occurrence at time
and determines the proportional intensity of trade at the
price level, , when the value is . The structure of intensities
guarantees the equivalence of the above two approaches.

III. BAYES ESTIMATION VIA FILTERING

Bayes estimate, which is the posterior mean, is the least mean
square error (MSE) estimate. The normalized filtering equa-
tion characterizes how the posterior evolves. The core of the
Bayesian estimation via filtering is to construct an algorithm to
compute the conditional distribution, which becomes a posterior
after a prior is assigned. The algorithm, which is based on the
filtering equation, is naturally recursive with every trade. One
basic requirement for the recursive algorithm is consistency,
namely, the conditional distribution computed by the recursive
algorithm converges to the true one assumed in the model. This
is guaranteed by a theorem on the convergence of conditional
expectation.

In this section, we first review two main results: the filtering
equation and the theorem on the convergence of conditional ex-
pectation. Then, we further prepare JSV-GBM as an illustration
for the approach. Finally, we construct a consistent recursive al-
gorithm for JSV-GBM.

A. Review

The following two results are from [18].
1) Filtering Equation: Before the filtering equation is pre-

sented, some terms are defined later. Let
be the -algebra generated by the observed sample path

of . is all the available information up to time .
Definition 3.1: Let be the conditional distribution of

given .
Remark 3.1: Assuming priors on becomes

the joint posterior of .
Definition 3.2: Let

be the conditional expectation of
given .

Theorem 3.1: Suppose that satisfies Assumption 2.1,
and is defined in (1)with Assumptions 2.2–2.5. Then, for
every and every in the domain of generator

is the unique solution of the SDE, the normalized filtering
equation,

(2)

Remark 3.2: When the trading intensity is deterministic,
, the normalized filtering equation is

simplified as

(3)

Note that disappears in (3). This reduces the computa-
tion greatly in the Bayesian parameter estimation. Hence, this
convenient case is assumed in JSV-GBM. The tradeoff is that
the relationship between trading intensity and other parameters
(such as volatility) is excluded.

Let the trading times be then (3) can be written
in two parts. The first is called the “propagation equation,” de-
scribing the evolution without trades and the second is called the
“updating equation,” describing the updating when a trade oc-
curs. The propagation equation has no random component and
is written as

This implies that when there are no trades, the posterior evolves
deterministically.

Assume the price at time occurs at the th price level,
then the updating equation is

It is random because the price level is random.
2) Convergence Theorem on Conditional Expecta-

tion: Suppose the state space of is discretized with
as the length between lattices in the th component of and

as that of . Let . Then, , an
approximation for , can be constructed. Define

...

(4)

where , and define
. We use the notation, , to mean converges weakly

(or in probability measure) to in the Skorohod topology as
.

Theorem 3.2: Suppose that is on the probability
space with Assumptions 2.1–2.5. is defined by (4).
Suppose that is on , and Assumptions
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2.1–2.5 also hold for . If as
, then

i) as ;
ii)

as for every
bounded continuous function .

Remark 3.3: This theorem provides a recipe for constructing
a consistent recursive algorithm. When we take “F” as an appro-
priate indicator function, becomes
the conditional probability mass function for . The-
orem 3.2, then, implies that the conditional probability mass
function is an approximation to the conditional distribution of

. The recursive algorithm to be constructed is to compute
such a conditional probability mass function, which becomes a
posterior after a prior is assigned.

B. Further Preparation of JSV-GBM

The value process is the JSV-GBM model in Example 2.3.
This model builds upon GBM as the models of [13] and [12]
do. Their difference is in the volatility dynamics. In [13] and
[12], the path of stochastic volatility is continuous. However, in
JSV-GBM, the volatility jumps according to a Poisson process.

To reduce computation, we further assume that the distribu-
tion for the i.i.d. sequence of jumps, , is uniformly dis-
tributed on a range, . This implies that every time when
a volatility changes, the new volatility is randomly drawn from
a uniform distribution on . Accommodating other pa-
rameters, the generator of JSV-GBM becomes

(5)

There are two reasons to choose this model for illustration.
First, the model is built upon GBM, the standard model in much
of mathematical finance, with stochastic volatility. Second, the
stochastic volatility jumps and the generator of the model in-
volves both diffusion and jump generators, the two major types
of generator. Then, the issue of how to build the approximate
Markov chain and further recursive algorithms for both diffu-
sion and jump processes is illustrated in one example.

There are six parameters in the model: .
The two clustering parameters can be estimated by the
method of relative frequency. The estimation of stochastic
volatility as well as the other parameters is done by Bayes
estimation via filtering.

C. Construction of the Recursive Algorithm

For the nonlinear filtering problem, Kushner [15, Ch. 12] de-
velops approximation methods based on replacing the signal
process by a finite state Markov chain that approximates the
signal equally spaced in time. Although trades occur irregularly
spaced in time, the same idea can be applied here.

Theorem 3.1 provides the optimum filter and Theorem 3.2
provides a recipe for constructing a consistent recursive algo-
rithm as an approximate optimum filter. The recursive algorithm
in this section is constructed for (3), when the trading intensity
is deterministic with the generator in (5).

There are three steps in the process of deriving the recursive
algorithm.

Step 1: Construct a Markov chain as an ap-
proximation to . Here, , all the
parameters to be estimated by filtering.

First, we discretize the parameter spaces of , and .
Suppose there are and
lattices in the discretized spaces of , and respec-
tively. For example, the discretization for is,

where
and the number of lattices is . De-

fine , the th lattice in the latticized param-
eter space of . Similarly, define

, and
. Let . The discretized space

of is a natural approximation for the parameter space,
and the Markov chain is a natural approximation for the sto-
chastic process .

Second, it is observed that the construction of an approxi-
mate Markov chain can be transformed to the construction of a
Markov chain generator, , such that as . ,
the one given by (5). The diffusion generator involves first- and
second-order differentiation and the jump generator involves
integration. The finite difference approximation is applied for
differentiation and the rectangle approximation for integration.
One constructs as follows:

(6)

where
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and

Remark 3.4: is the birth rate and
is the death rate, which should always be nonnegative. If for some
values of , and in their ranges, one of the rates becomes neg-
ative, then we always make the negative rate positive by making

small. And is the mean of on .
Clearly, as . The Markov chain based upon

is the approximate model of . Then, , defined
by Equation (4), is obtained.

Remark 3.5: The counting process observations can be
viewed as defined by (1) or be (4) depending upon
whether the driving process is or .
By Theorem 3.2, when is small, the recursive algorithm com-
putes the posterior for the approximate model ,
which is close to the posterior of the true model .

Step 2: Obtain the filtering equation for the approximate
model. When is replaced by by by

, and there also exists a probability measure to replace
, then Assumptions 2.1–2.5 also hold for .

Let denote the discretized signal of
. To present the filtering equation

for the approximate model, the discretized approximations of
and in Definitions 3.1 and 3.2 are defined as follows.
Definition 3.3: Let be the conditional probability mass

of given .
Definition 3.4: Let

where covers all lattices in the discretized state
space.

Applying Theorem 3.1, we obtain the similar filtering equa-
tion for the approximate model

(7)

where is the th component of .
Similarly, the previous filtering equation can be separated into

the propagation equation

(8)

and the updating equation (assuming that a trade at th price
level occurs at time )

(9)

Step 3: Convert (8) and (9) to the recursive algorithm. First,
we define the approximate posterior that the recursive algorithm
computes.

Definition 3.5: The posterior of the approximate model,
, at time is denoted by

The core of the conversion is to take as the following indi-
cator function:

(10)

Then, the following facts emerge:

and

Along with three similar results, in (8) becomes
explicit and the propagation (8) becomes

(11)

If a trade at th price level occurs at time , the updating
(9) can be written as (12), shown at the bottom of the page,
where the summation is over the latticized spaces of
and . Note that , the transition proba-
bility from to , is specified in (15) in Appendix A.

Next, we make (11) a recursive algorithm. Equation (11) is
deterministic and an Euler scheme is employed for approxima-
tion. After excluding the probability-zero event that two or more
jumps occur at the same time, there are two possible cases for

(12)
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Fig. 1. Histograms of price changes and of fractional parts: Simulated data and Microsoft data.

the intertrading time. Case 1, if , the length con-
troller, then we can approximate
as

(13)

Case 2, if , then we can choose a fine
partition of
such that and then approximate

by applying repeatedly the recursive
algorithm given by (13) from to , then , until

.
Equations (12) and (13) consist of the recursive algorithm we

employ to calculate the approximate posterior at time for
based on the posterior at time .

Finally, we choose a reasonable prior. We assume the inde-
pendence between and . Set

where is the first trade price of a data set
because they are very close. If there is no special information of

available, we may simply assign uniform distri-
butions to the latticized state–space of and obtain
the prior at as

if
otherwise

TABLE I
BAYES ESTIMATES FOR A SIMULATED DATA

1) Consistency of the Recursive Algorithm: There are two
approximations in the construction of the recursive algorithm.
The first is to approach the time integral in the propagation (11)
by an Euler scheme, whose convergence is well-known. The
second is more important. It is the approximation of the filtering
equation (3) (the optimum filter) by the filtering equation (7) of
the approximate model (the approximate optimum filter). Since

by construction, Theorem 3.2 guarantees
the convergence of the filtering equation (7) to filtering equation
(3) in the sense of weak convergence in the Skorohod topology.

IV. SIMULATION AND REAL DATA EXAMPLES

The consistent (or robust) recursive algorithm for computing
the joint posterior and Bayes estimates, the margin posterior
means, is extensively tested and validated on simulated data.
One simulation example is provided to demonstrate that the
Bayes estimates for stochastic volatility are able to capture the
moving of volatility quickly and are close to the true values.
Then, the recursive algorithm is applied to two months of trans-
action prices of Microsoft and the stochastic volatility estimates
can be obtained in real-time.

A. Simulation Study

Extensive simulation studies are done and one of them is re-
ported as follows.
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Fig. 2. Bayes estimates of volatility for 90 000 simulated data.

Fig. 3. Bayes estimates of volatility with two-SE bounds for the last 25 000 simulated data.

1) Simulated Data and Its Micromovement Features: In
the following example, these parameters are picked for the
jumping stochastic volatility models: , cor-
responding to the annualized expected return 27.38% with
annualized factor 260 days and each day with 6.5 business
hours; and , which means one change of
volatility in seconds on average.
The range of volatility is [0.000 04, 0.0004], corresponding to
the annualized range of [9.866%, 98.66%]. Since has no
impact in estimation and noise, the trading intensity is assumed
to be constant: for all (i.e., one trade in about

s). For the parameters of noise, in order to show
the model can produce the micromovement features of actual
transaction price data, I choose the parameters close to those of
the Microsoft data set, which is discussed in Section IV-B. Let

, and . Using these parameters, 90 000
observations are simulated.

Fig. 1 has two pair of density histograms of price changes and
of the fractional parts of price. The upper pair are produced from
a simulated data and the lower pair from the actual Microsoft
data. Their similarity shows that by incorporating discrete, non-
clustering, and clustering noises, the proposed model possesses
the micromovement features of the actual prices.

2) Bayes Estimates for the Simulated Data: A Fortran pro-
gram for the recursive algorithm is constructed to calculate, at
each trading time , the joint posterior of ,
their marginal posteriors, their Bayes estimates and their stan-
dard errors(SE), respectively.

For time-invariant parameters , they converge to their
true values and the two-SE bounds become smaller and smaller,

TABLE II
BAYES ESTIMATES FOR TRANSACTION DATA OF MSFT,

JANUARY AND FEBRUARY 1994

and goes to zero as in the case of GBM studied in [18]. Hence,
only the final Bayes estimates, their SE, and true values are pre-
sented in Table I. The true values are close to the Bayes estimates
and all within two SE bounds.

Estimating stochastic volatility is the focus of this paper.
Fig. 2 shows how the Bayesian estimates of volatility evolve in
comparison of the time-varying true values of volatility, ,
for all 90 000 data. Overall, we see that the Bayes estimates
of volatility are close to their true values. As the true volatility
changes, the Bayes estimates catch up with the movement
quickly. Fig. 3 presents them for about the last 25 000 data. We
observe that most of the true values of stochastic volatility are
within the two SE bounds.

B. An Application to Real Data

The tested recursive algorithm is applied to a two-month (Jan-
uary and February, 1994, 40 business days) transaction data of
Microsoft.
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Fig. 4. Bayes estimates of volatility (GBM versus JSV-GBM) for MSFT data

Fig. 5. Bayes estimates of volatility with two-SE bounds for the last 5000 MSFT data.

1) The Data: The data are extracted from the trade and
quote (TAQ) database distributed by NYSE. We apply standard
procedures to filter the data but with one important exception.
Previous studies cannot handle multiple trades at a given point
in time and they exclude those trades with zero time duration.
Autoregressive conditional duration model proposed by [7] is
such an example. The present method can handle such cases.
The final sample has 49 937 observations. Based on the relative
frequencies of the fractional parts of the price for Microsoft,
we may use the method of relative frequencies, a variant of the
method of moments, to estimate , and .
The empirical distribution of trade waiting times does not sup-
port a pure exponential distribution for duration, but does support
a mixed exponential distribution, which is consistent with the
assumption that the total trading intensity, , can depend on
time. The mean duration is 18.63 s with a standard error 30.01 s.

2) Bayes Estimates for Volatility: JSV-GBM Versus GBM:
The recursive algorithm for JSV-GBM is applied to the trans-
action data of Microsoft. For comparison, the recursive algo-
rithm for GBM is applied to the same data set to obtain Bayes
estimates.

Table II presents the final annualized (with an annual factor
of 260) Bayes estimates and their SE bounds for for
JSV-GBM, and for GBM. For JSV-GBM, the jump intensity, ,
is 5176.79, which means there are 5176.79 changes in volatility
annually, or about 20 times daily. It is observed that intraday
volatility is “U-shaped” [17]: higher volatility in opening and

closing of the market. So volatility changes at least twice a
day. The large is consistent with the observation and indicates
the volatility changes even more frequently. The parameter for
nonclustering noise, , is reduced significantly in JSV-GBM,
probably because more price variation is explained in stochastic
volatility.

Fig. 4 shows how the Bayesian estimates of volatility for
JSV-GBM and GBM evolve and demonstrate how different
the volatility estimates are for the two models. In GBM, the
volatility is assumed to be constant, and its estimates tend to
be stable and fail to capture the movement of volatility. In
JSV-GBM, the stochastic volatility feature in the Microsoft
data is clearly demonstrated. This is also clearly confirmed
by the Bayesian model selection via filtering based on Bayes
factor developed in [14]. To avoid crowdedness in picture,
Fig. 5 presents only the last 5 000 Bayesian estimates of
volatility for JSV-GBM and their estimated two-SE bounds.
We can see the volatility estimates vary greatly. Sometimes it
moves continuously and sometimes it jumps just as the model
suggests. Overall, the smallest volatility estimate is 5.424%
annually, and the largest is 72.58%.

V. CONCLUSION

A unified Bayesian estimation via filtering approach is
developed for estimating stochastic volatility for a class of
micromovement models, which capture the impact of noise at
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if and
if and
if and
if and
if and
if and
if and
if and

(15)

the microlevel. The class of models has an important feature in
that it can be formulated as a filtering problem with counting
process observations. Under this formulation, the whole sample
paths are observable, and the complete tick data information is
used in Bayes parameter estimation via filtering. A consistent
recursive algorithm is developed to compute the Bayes esti-
mates for the parameters in the model, especially, the stochastic
volatility. Simulation studies show that Bayes estimates for
time-invariant parameters are consistent, and Bayes estimates
for stochastic volatility are close to their true values and are able
to capture the movement of volatility quickly. The recursive
algorithm is fast and feasible for large data sets and it has the
recursive feature allowing quick and easy update. The recursive
algorithm is applied to Microsoft’s transaction data and we
obtain Bayes estimates and provide strong affirmative evidence
that volatility changes even more dramatically in trade-by-trade
level. The model and its Bayes estimation via filtering equation
can be extended to jump-diffusion process for the value process,
and other kinds of noise according to the sample characteristics
of data. The models and the Bayes estimation can be applied
to other asset markets such as exchange rates and commodity
prices. It can also apply to assess the quality of security market,
and to compare information flows and noises in different
periods and different markets.

APPENDIX A

To formulate the biasing rule, we first define a classifying
function

if the fractional part of y is odd eighth
if the fractional part of y is odd quarter
if the fractional part of y is a half or zero

(14)
The biasing rules specify the transition probabilities from
to . Then, , the transition probability can

be computed through where
. Suppose

. Then, can be calculated as (15), shown at
the top of the page.
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