Homework 3, ORFE 569

Due Mar. 29, 2007

1. Let X be a semimartingale, $X_0 = 0$. Suppose that Z satisfies the equation $Z_t = 1 + \int_0^t Z_{s-} dX_s$. Show that

$$Z_t = \exp\left\{X_t - \frac{1}{2}[X,X]_t\right\} \prod_{0 < s \le t} (1 + \Delta X_s) \exp\left\{-\Delta X_s + \frac{1}{2}(\Delta X_s)^2\right\}.$$

(Hint: Let $K_t = X_t - \frac{1}{2}[X, X]_t^c$ and $S_t = \prod_{0 \le s \le t} (1 + \Delta X_s) \exp\{-\Delta X_s\}$. First show that $Z_t = S_t e^{K_t}$. Then, apply Itô lemma to $f(K_t, S_t)$ where $f(x, y) = ye^x$ to show Z_t satisfies the SDE.)

2. Show the SDE

$$L(t) = 1 + \sum_{k=1}^{n} \int_{0}^{t} \left[\lambda_{k}(\theta(s-), X(s-), s-) - 1 \right] L(s-) d(Y_{k}(s) - s),$$

has the solution

$$L(t) = \prod_{k=1}^{n} \exp\left\{\int_{0}^{t} \log \lambda_{k}(\theta(s-), X(s-), s-) dY_{k}(s) - \int_{0}^{t} \left[\lambda_{k}(\theta(s), X(s), s) - 1\right] ds\right\}.$$

using two approaches:

- (a) Use Itô lemma;
- (b) Use the formula in Problem 1.
- 3. Derive the recursive algorithm to compute the Bayes estimates of your model for Lab Assignments 2 and 3. (Note that an recursive algorithm includes both $p(y_k|x)$ and the recursive equations derived from the filtering equation.)
- 4. Derive the recursive algorithm to compute the Bayes estimates of another model of your interest among the possible models given.
- 5. Let N be a Poisson process with intensity λ , and let $\{\xi_k\}$ be a Bernoulli sequence with $P(\xi_k = 1) = 1 P(\xi_k = 0) = p$. Define

$$N_1(t) = \sum_{k=1}^{N(t)} \xi_k,$$
 $N_2(t) = \sum_{k=1}^{N(t)} (1 - \xi_k).$

Prove that N_1 and N_2 are independent Poisson processes with parameter λp and $\lambda(1-p)$ respectively.

- 6. Assume dP/dQ = L on (Ω, \mathcal{F}) . Prove that
 - (a) $E^{P}[X] = E^{Q}[XL]$ (Hint: Use Radon-Nikodym theorem)
 - (b) (Extra Credits) the corresponding formula for conditional expectation: Suppose \mathcal{D} is a sub- σ -field of \mathcal{F} . Then,

$$E^{P}[Z|\mathcal{D}] = \frac{E^{Q}[ZL|\mathcal{D}]}{E^{Q}[L|\mathcal{D}]}$$