Homework 4, ORFE 569

Due Apr. 24, 2007

1. Let $\phi(f, t)$ as defined in Section 3.1 and satisfy the unnormalized filtering equation (3.1) in Zeng (2003). Let $l(f, t)=\ln (\phi(f, t))$ and derive the SDE for $l(f, t)$ using Itô formula for semimartingale. (Note that $l(1, t)$ becomes the log-likelihood.)
2. Let $L(t)=\left.\frac{d P}{d Q}\right|_{\mathcal{F}_{t}}$. Show that Z is a P-local martingale if and only if $L Z$ is a Q - local martingale. (Hint: Use Bayes Theorem)
3. (Lemma A. 3 in Zeng 2003) Suppose that \vec{X} and \vec{Y} are independent. If U is $\mathcal{F}_{t}^{\vec{X}, \vec{Y}}$-adapted, satisfying $\int_{0}^{t} E[|U(s)|] d s<\infty$, then

$$
E^{Q}\left[\int_{0}^{t} U(s) d s \mid \mathcal{F}_{t}^{\vec{Y}}\right]=\int_{0}^{t} E^{Q}\left[U(s) \mid \mathcal{F}_{s}^{\vec{Y}}\right] d s
$$

4. Derive the recursive algorithm to compute the Bayes factor for the model selection of your model for Lab Assignments 2 and 3 verse another model of your choice by do the following: (Section 4 in Kourtizin and Zeng 2004 gives an example)
(a) Write down the two models. One in the form of Filtering with counting process observations and in the form of Construction of Price from Intrinsic Value. Specify $p\left(y_{j} \mid x\right)$ also for each model.
(b) Write down the generators for the two models. $\mathbf{A}^{k} f_{k}$ for $k=1,2$.
(c) Write down the generators for the approximate models, $\mathbf{A}_{\varepsilon}^{(k)} f_{k}$ for $k=1,2$.
(d) Define the appropriate $q_{\varepsilon, t}^{(k)}$, and $q_{\varepsilon}^{(k)}(\cdots ; t)$ for $k=1,2$.
(e) Define the appropriate lattice-point indicators for Model k.
(f) Derive (in detail) the two propagation parts of the recursive algorithm for $q_{\varepsilon}^{(k)}\left(\cdots ; t_{i+1}-\right)$ for $k=1,2$.
(g) Derive the two updating parts of the recursive algorithm for $q_{\varepsilon}^{(k)}\left(\cdots ; t_{i+1}\right)$ for $k=1,2$.
(h) Write down the equations for $B_{12}\left(t_{i+1}\right)$ and $B_{21}\left(t_{i+1}\right)$.
(i) Write appropriate priors for the two models.
