
Fast Adaptive Multiple Transform for Versatile Video Coding

Zhaobin Zhang∗, Xin Zhao†, Xiang Li†, Zhu Li∗, Shan Liu†

∗University of Missouri Kansas City †Tencent America
5100 Rockhill Rd 661 Bryant St

Kansas City, MO 64110 Palo Alto, CA 94301
{zzktb@mail.,lizhu@}umkc.edu {xinzzhao,xlxiangli,shanl}@tencent.com

Abstract

The Joint Video Exploration Team (JVET) recently launched the standardization of next-
generation video coding named Versatile Video Coding (VVC) in which the Adaptive Multi-
ple Transforms (AMT) is adopted as the primary residual coding transform solution. AMT
introduces multiple transforms selected from the DST/DCT families and achieves noticeable
coding gains. However, the set of transforms are calculated using direct matrix multipli-
cation which induces higher run-time complexity and limits the application for practical
video codec. In this paper, a fast DST-VII/DCT-VIII algorithm based on partial butterfly
with dual implementation support is proposed, which aims at achieving reduced operation
counts and run-time cost meanwhile yield almost the same coding performance. The pro-
posed method has been implemented on top of the VTM-1.1 and experiments have been
conducted using Common Test Conditions (CTC) to validate the efficacy. The experimen-
tal results show that the proposed methods, in the state-of-the-art codec, can provide an
average of 7%, 5% and 8% overall decoding time savings under All Intra (AI), Random
Access (RA) and Low Delay B (LDB) configuration, respectively yet still maintains coding
performance.

1 Introduction

In block-based hybrid video coding codecs, such as H.264/AVC [1] and HEVC [2],
prediction and transform residual coding are two vital techniques to achieve efficient
coding performance. The typical prediction process only targets at removing the
statistical redundancy between the reference and current image blocks, while further
removing the inter-pixel redundancy between residual samples is usually done by lin-
ear transforms [3]. In October 2015, ISO/IEC JTC1 SC29/WG11 MPEG and ITU-T
SG16/Q6 VCEG worked together as the Joint Video Exploration Team (JVET) to ex-
plore state-of-the-art algorithms and prepare for the next-generation video standards
beyond HEVC. In the on-going working draft of the next-generation video coding
standard Versatile Video Coding (VVC) [4], Adaptive Multiple Transforms (AMT)
is adopted as the primary residual transform solution. Instead of only using DCT-II,
AMT introduces multiple core transforms from DST/DCT families, including DCT-
II, DST-VII, DCT-VIII, DST-I and DCT-V.

Transform selection is performed based on Intra Prediction Modes (IPM). For each
intra coded transform unit (TU), given the intra prediction mode, one of the three
transform sets is first identified according to Table 1. The encoder then tries every
transform core in the identified transform set for horizontal and vertical transform,
the best one is explicitly signaled. As there are two transform candidates in each

transform set [5], so the transform selection is signaled with two-bit index, with one
bit indicating either horizontal or vertical [3].

Table 1: Selection of (H)orizontal and (V)ertical transform set indices for each intra pre-
diction mode [5].

IPM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

H 2 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1

V 2 1 0 1 0 1 0 1 2 2 2 2 2 1 0 1 0 1

IPM 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

H 0 1 0 1 0 1 2 2 2 2 2 1 0 1 0 1 0

V 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0

Since there are totally five kinds of transforms need to be evaluated to select
the optimal category, the encoder run-time complexity is expensive. To alleviate
this hassle, several fast algorithms have been studied in literature. In [5], a two-
pass transform selection method is proposed for encoder in which the encoding time
saving is achieved by skipping the second pass in some cases. In [6], a sparse method
is devised to approximate the transforms in JEM7 which requires fewer operation
counts. In [7], a method for implementing N -point DST-VII using 2N + 1 point
Discrete Fourier Transform (DFT) is proposed. However, existing fast methods are
not capable of supporting all the desirable features of a transform design in the video
codec, including 16-bit intermediate operation, integer operation, identical results
between fast method and matrix multiplication.

In this paper, a fast DST-VII/DCT-VIII algorithm is proposed to reduce AMT
time complexity. We exploit the properties that are considered useful for compression
efficiency and for efficient implementation for DST-VII and DCT-VIII core trans-
form basis. To ensure the orthogonality property, a tuning process is performed on
the transform matrices. The proposed fast method achieves significant time savings
without unwelcome coding performance. Experiments and a thorough analysis of the
complexity demonstrate the effectiveness of the proposed method. A proposal based
on this work is being studied as core experiment (CE) in the 11th MPEG JVET
meeting [8].

The remainder of this paper is organized as follows. Section II elaborates the
proposed fast method in detail. The complexity analysis is provided in Section III,
both theoretically and practically. Section VI presents and discusses the experimental
results. The paper is summarized and concluded in Section V.

2 Proposed Fast Method

In VVC, non-square transform block partition scheme is introduced. Given a M ×N
residual block, the two-dimensional transform can be implemented as a separate hor-

izontal one-dimensional transform followed by a vertical one-dimensional transform.
Typically, the forward and inverse transform matrices are transposes of each other.
Unless otherwise specified, all the following notations and properties are based on the
DST-VII forward transform matrix. It should be understood that the inverse trans-
forms are corresponding transpose matrices thereby the same implementation could
be achieved. In addition, the same design can be seamlessly deployed to DCT-VIII.

2.1 Fast Transform

The basis functions of N -point 2D DST-VII and DCT-VIII are tabulated in Table
2. The transform core, which is a matrix consists of the basis vectors, of 16-point
DST-VII is shown in Eq. 1, and similar representations can be obtained for other
sizes.

T =

a b c d e f g h i j k l m n o p
c f i l o o l i f c 0 −c −f −i −l −o
e j o m h c −b −g −l −p −k −f −a d i n
g n l e −b −i −p −j −c d k o h a −f −m
i o f −c −l −l −c f o i 0 −i −o −f c l
k k 0 −k −k 0 k k 0 −k −k 0 k k 0 −k
m g −f −n −a l h −e −o −b k i −d −p −c j
o c −l −f i i −f −l c o 0 −o −c l f −i
p −a −o b n −c −m d l −e −k f j −g −i h
n −e −i j d −o a m −f −h k c −p b l −g
l −i −c o −f −f o −c −i l 0 −l i c −o f
j −m c g −p f d −n i a −k l −b −h o −e
h −p i −a −g o −j b f −n k −c −e m −l d
f −l o −i c c −i o −l f 0 −f l −o i −c
d −h l −p m −i e −a −c g −k o −n j −f b
b −d f −h j −l n −p o −m k −i g −e c −a

(1)

The variables a, b, . . . , p can be derived from the formulations defined in Table
2, and their values might be different for different size DST-VII transform matrix.
To avoid floating point operations, the transform core of DST-VII is scaled by a
pre-defined factor and rounded to the nearest integer, or further tuned by an offset.

Table 2: Basis functions of DST-VII and DCT-VIII for N-point input.

Transform Type Basis function Ti(j), i, j = 0, 1, . . . , N − 1

DST-VII Ti(j) =
√

4
2N+1

· sin(π·(2i+1)·(j+1)
2N+1

)

DCT-VIII Ti(j) =
√

4
2N+1

· cos(π·(2i+1)·(2j+1)
4N+2

)

The DST-VII core transform matrix has several properties that are considered
useful for efficient implementation. These useful features are summarized as follows.

1. Feature #1: The first row vector contains N unique values. A replicate phe-
nomenon is that the summation of several elements is equal to that of another
few or one element.

2. Feature #2: Except for the row vectors satisfied Feature 1, some of the other
row vectors have replicate patterns.

3. Feature #3: Except for the row vectors satisfied Feature 1 and 2, the remain-
der row vector(s) only contain(s) one or two unique absolute values.

From the 16-point DST-VII matrix (Eq. 1), the first basis vector has the following
characteristic which corresponds to Feature 1.

a+j = l, b+i = m, c+h = n, d+g = o, e+f = p (2)

Denote the input vector for a 16-point transform as x = {x0, x1, x2, . . . , x15},
and the output transform coefficient vector as y = {y0, y1, y2, . . . , y15}. Based on
relationship (2), to calculate y0, instead of doing vector-by-vector multiplication which
requires 16 multiplications. The following alternative implementation can be done to
derive the same results.

y0 =a·(x0+x11)+b·(x1+x12)+c·(x2+x13)+d·(x3+x14)+e·(x4+x15)+

f ·(x5+x15)+g ·(x6+x14)+h·(x7+x13)+i·(x8+x12)+j ·(x9+x11)+k ·x10
(3)

which requires only 11 multiplications. In addition, when calculating y2, y3, y6, y8,
y9, y11, y12, y14, y15, the similar implementation can be done, and the intermediate
results of (x0+x11), (x1+x12), (x2+x13), (x3+x14), (x4+x15), (x5+x15), (x6+x14),
(x7+x13), (x8+x12), (x9+x11) and k ·x10 can be re-used.

To explain Feature 2, take the second basis vector as an example. It can be divided

Page: Date Saved: 10 04

{ a b c d e f g h i j k l m n o p }

{ c f i l o o l i f c 0 c f i l o }

{ e j o m h c b g l p k f a d i n }

{ g n l e b i p j c d k o h a f m }

{ i o f c l l c f o i 0 i o f c l }

{ k k 0 k k 0 k k 0 k k 0 k k 0 k }

{ m g f n a l h e o b k i d p c j }

{ o c l f i i f l c o 0 o c l f i }

{ p a o b n c m d l e k f j g i h }

{ n e i j d o a m f h k c p b l g }

{ l i c o f f o c i l 0 l i c o f }

{ j m c g p f d n i a k l b h o e }

{ h p i a g o j b f n k c e m l d }

{ f l o i c c i o l f 0 f l o i c }

{ d h l p m i e a c g k o n j f b }

{ b d f h j l n p o m k i g e c a }

here a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p are the N unique numbers which are specified by

the formulation of DST 7.

Example of Feature #1:

It is noted that the element values have the following characteristics.

a + j = l

b + i = m

c + h = n

d + g = o

e + f = p

Therefore, to calculate y0, instead of doing the following vector by vector multiplication:

y0 = a·x0 + b·x1 + … + p·x15

which requires 16 multiplications. The following alternative implementation can be done to derive the same

results:

y0 = a·(x0+x11) + b·(x1+x12) + … + j·(x9+x11) + k·x10

which requires 10 multiplications. It is observed that the number of multiplications is reduced.

In addition, while calculating y2, y3, y6, y8, y9, y11, y12, y14, y15, similar

implementation can be done, and the intermediate results (x0+x11), (x1+x12), (x2+x13),

(x3+x14), (x4 x15), (x5+x15), (x6+x14), (x7+x13), (x8+x12), (x9+x11) and

k·x10 can be re used. It is erved that the number of additions is reduced.

Example of Feature #2:

The second basis vector is

{ c, f, i, l, o, o, l, i, f, c, 0, -c, -f, -i, -l, -o}

Segment 0 Segment 1 Segment 2

which can be divided into three segments, and they are replicate with sign changes, or flipped version of

each other. Based on Feature #2, when calculating y1, instead of doing the following vector by vector

multiplication

y1 = c·x0 + f·x1 + … o·x15

which requires 16 multiplications. The following alternative implementation can be used to derive the same

results.

Figure 1: Repeating patterns are observed in Feature 2.

into 3 segments, and they are replicate with sign changes, or flipped version of each
other. When calculating y1, instead of doing the vector-by-vector multiplication which
requires 15 multiplications, the following alternative implementation which requires
only 5 multiplications can be done to derive the same results.

y1 = c·(x0+x9−x11)+f·(x1+x8−x12)+i·(x2+x7−x13)+l·(x3+x6−x14)+o·(x4+x5−x15) (4)

In addition, when calculating y1, y4, y7, y10, y13 the calculation can be done in the
similar way, and intermediate results of (x0+x9−x11), (x1+x8−x12), (x2+x7−x13),
(x3+x6−x14) and (x4+x5−x15) can be re-used.

To explain Feature 3, take the 6th basis vector as an example. It is noticed that
the 6th basis vector contains a single value k without considering the sign changes.
Therefore, instead of calculating y10 using vector-by-vector multiplication which re-
quires 11 multiplications, y10 can be alternatively derived by

y10 = k ·(x0−x2+x3−x5+x6−x8+x9−x11+x12−x14+x15) (5)

which requires only 1 multiplication. For 16-point and 64-point forward and back-
ward DST-VII, the above three features are also available, thus similar fast methods
discussed above are also applicable. For the inverse transform, the transform core
matrix is the transpose of the transform core matrix used for forward transforms,
hence similar features could be utilized.

With the proposed method, identical results between fast method and matrix mul-
tiplication can be achieved, i.e., dual implementation support, which was considered
as an important feature of the HEVC core transform design. With dual implemen-
tation support, the flexibility of selecting either fast method or matrix multiplication
is provided to better optimize the complexity for a specific implementation scenario
without any impact on the coded bitstream.

2.2 Transform Matrix Tuning

The core transform matrices of VVC are finite precision approximations of the DST/DCT
matrix. This is beneficial for hardware implementation and avoids encoder-decoder
mismatch as well as drift caused by manufacturers implementing the inverse transform
with slightly different floating point representations. On the other hand, a disadvan-
tage of using approximate matrix elements is that some of the properties discussed
in Section 2.1 may not be satisfied anymore. There is a trade-off between the com-
putational cost associated with using high bit-depth for the matrix elements and the
degree to which some of the conditions are satisfied. In VVC test model VTM-2.0,
transform matrix coefficients are represented in 10-bit. However, some of the vectors
still cannot satisfy the above-mentioned properties due to the rounding error.

To make the matrix comply with these properties meanwhile minimize the side
effects on compression efficiency, several principles have to be followed without any
compromise.

1. The DST-VII/DCT-VIII matrix can be specified by using a small number of
unique elements.

2. The orthogonality of DST-VII/DCT-VIII is optimized as much as possible.

3. The adjusted DST-VII and DCT-VIII basis is kept close to the original floating-
point DST-VII and DCT-VIII basis.

In addition, several metrics are defined to measure the degree of approximation to
the floating-point matrix, including the orthogonality measure, accuracy measure and
norm measure. Given an integer N -point DST-VII/DCT-VIII approximation with
scaled matrix elements equal to dij and basis vectors equal to di = [di0, . . . , di(N−1)]

T

where i = 0, . . . , N − 1, these measures are optimized using the following metric.

D = |α2 · I −K ·KT | (6)

where i, j = 0, . . . , N − 1, and the scale factor α = 64 ·
√
N . The tuning process is

performed by traversing all possible integer values and measure the tuned matrix with
the above three measures, the best one is selected as the final matrix. Meanwhile,
during the optimization of the transform core K, it is restricted that per-element
difference between K and K0 has a magnitude being less than or equal to 1, such
that the optimized transform basis is kept being close to the original DST-VII/DCT-
VIII basis. Finally, by using 10-bit representation, all the three features are preserved
which can be used to implement efficient fast methods.

3 Complexity Analysis

In this section, the complexity is analyzed in both arithmetic operations in theory
and software execution time in practice.

3.1 Arithmetic Operations

With straightforward matrix multiplication, the number of operations for the 1D
inverse transform is N2 multiplications and N(N − 1) additions. Therefore, for a 2D
transform, the number of multiplications required is 2N3 and the number of additions
is 2N2(N − 1). Due to the adoption of the non-square transform structure, we will
use the number of arithmetic operations for 1D inverse transform to compare the
proposed method and the conventional matrix multiplication method.

Take the 16-point DST-VII inverse transform as an example, 256 multiplications
and 240 additions are needed to generate a row vector. In the proposed fast method,
there are 10 rows satisfying Feature 1, 5 rows satisfying Feature 2 and 1 row satisfy-
ing Feature 3. While performing Feature 1, there are 16 intermediate variables can
be re-used which require 25 additions, another 1 intermediate variable that can be
re-used which requires 1 multiplication. To leverage these intermediate variables gen-
erating final results, another 10×10 multiplications and 10×10 additions are required.
Therefore, 101 multiplications and 125 additions are required in total to perform
Feature 1. Similarly, 25 multiplications and 20 additions to finish the computation
of rows satisfying Feature 2. To apply Feature 3, 1 multiplication and 10 additions
are needed. Therefore, in total there are 127 multiplications and 155 additions using
the proposed fast method, e.g., 50% and 35% arithmetic operations are saved for
multiplication and addition, respectively.

The numbers of arithmetic operations required for the 1D N -point inverse trans-
form of matrix multiplication and the proposed fast method are tabulated in Table

Table 3: The number of arithmetic operations for a 1D forward/inverse transform.

Transform Size
Matrix Multiplication Partial Butterfly
Mult Add Shift Mult Add Shift

16 256 240 16 127 155 16
32 1024 992 32 620 718 32
64 4096 4032 64 2207 2331 64

3. Overall, 41.8%, 33.1% and 43.8% total number of arithmetic operations are saved
for 16-point, 32-point and 64-point DST-VII/DCT-VIII transform, respectively.

0 1 2 3 4 5
Dec Time Anchor (s)

0

1

2

3

4

5

De
c
Ti
m
e
Fa

st
 (s

)

All Intra
fast16 (y=0.81x+0.03)
fast16+32 (y=0.58x+0.06)
fast16+32+64 (y=0.55x+0.06)

0 1 2 3 4 5
Dec Time Anchor (s)

0

1

2

3

4

5

De
c
Ti
m
e
Fa

st
 (s

)

Random Access
fast16 (y=0.90x-0.00)
fast16+32 (y=0.71x-0.00)
fast16+32+64 (y=0.60x+0.01)

Figure 2: Software execution time of decoding transform under AI and RA configurations.
The straight lines are linear regression approximation with L2 norm constraints.

3.2 Software Execution Time

In this subsection, the actual transform time of the proposed fast method is evaluated
and compared with that of VTM-1.1 anchor. In this paper, 16-point, 32-point and
64-point DST-VII/DCT-VIII fast methods are implemented. Test sequences are VVC
test sequences and the resolution ranging from 240P to 4K. In our implementation,
transform time of both forward and inverse are collected. We encode and decode the
sequences with different settings using VTM-1.1 and the proposed method, record
the elapsed time for further analysis. Due to the limited space, we will only show the
inverse transform time.

In order to see individual contribution of each block-level, we enable the proposed
method gradually in block size. In Figure 2, fast16 represents enabling fast method
of block size 16, fast16+32 refers to enabling fast method of block size 16 and 32,
and fast16+32+64 indicates enabling fast method of 16, 32 and 64. The vertical axis
represents decoding transform time of fast method while horizontal axis represents
that of anchor in seconds. The straight lines are the linear regression results with L2
norm metric. An average of 45% and 40% transform time savings have been achieved
with all block-level enabled under AI and RA configurations, respectively. The time
saving ratio increases from 19% to 45% when gradually enabling larger block size
fast method under AI configuration. Under RA configuration, 10%, 29% and 40%

decoding time savings have been witnessed for fast16, fast16+32 and fast16+32+64,
respectively.

4 Experimental Results

4.1 Experiment settings

The proposed fast method has been integrated to VVC reference software VTM-
1.1 [9]. The common test conditions [10], as defined by Joint Video Experts Team
(JVET) for evaluating proposals during the VVC development, are used to perform
the experiments. In those experiments, a set of 26 video sequences ranging from
416x240 to 3840x2160 are tested, including four artificial sequences with computer
screen and mixed natural and screen content. It should be noted that Class D is
not included into the overall average performance in the summary. The decoding
time and encoding time are measured in seconds. The run-time ratio of the proposed
method to anchor as defined in Eq. 7 is used to evaluate the time complexity, with
100% represents no run-time saving.

∆T =
Tproposed
Tanchor

× 100% (7)

The quantization parameters (QP) are 22, 27, 32 and 37. AI, RA and LDB config-
urations have been tested. Under AI configuration, every picture is coded as Intra
while under RA, intra period is set as one second, GOP size is set as 8. The codec is
operating in 10-bit mode, RDOQ is enabled.

4.2 Run-time Performance

The run-time results are tabulated in Table 4. An average of 7%, 5% and 6% de-
coding time savings have been achieved for AI, RA and LDB, respectively. The perk
decoding time saving occurs on Sequence Johnny of 17%, FoodMarkert4 of 11% and
BasketballDrillText of 12% for AI, RA and LDB, respectively. In terms of encod-
ing time savings, 3%, 6% and 8% average time savings have been observed for AI,
RA and LDB, respectively. The best encoding time saving is achieved on Sequence
RaceHorses with 21%, FoodMarket4 with 8% and SlideShow with 22% for AI, RA
and LDB, respectively. Though some sequences happen to occupy more time than
VTM-1.1 due to the execution time jitter of CPU, e.g., BQMall in AI settings, the
overall time saving is apparently quite encouraging.

4.3 BD-Rate Performance

To validate the tuned transform cores can achieve comparable PSNR performance,
we show the BD-Rate performance compared with VTM-1.1 in Table 5. The BD-
Rate are -0.02%, 0.00% and 0.01% for AI, RA and LDB, respectively. Therefore, the
tuned transform cores are able to yield almost the same coding performance on top
of the time savings. The effects caused by the replacement of transform cores can be
neglected.

Table 4: Run-time performance of proposed fast method compared with VTM-1.1 anchor.

Class Sequence
All Intra Random Access Low Delay

∆TEnc ∆TDec ∆TEnc ∆TDec ∆TEnc ∆TDec

A1
Tango2 96% 86% 94% 91% - -
FoodMarket4 100% 88% 92% 89% - -
CampfireParty2 95% 96% 93% 94% - -

A2
CatRobot1 100% 93% 95% 97% - -
DaylightRoad2 96% 93% 93% 95% - -
ParkRunning3 98% 92% 95% 97% - -

B

MarketPlace 98% 90% 94% 94% 90% 89%
RitualDance 99% 98% 93% 96% 91% 90%
Cactus 100% 94% 93% 94% 90% 92%
BasketballDrive 96% 92% 95% 91% 92% 95%
BQTerrace 98% 99% 97% 101% 92% 95%

C

BasketballDrill 96% 100% 94% 94% 91% 95%
BQMall 100% 101% 96% 98% 97% 95%
PartyScene 97% 102% 95% 100% 95% 100%
RaceHorses 98% 99% 95% 94% 91% 93%

D

BasketballPass 93% 97% 95% 93% 93% 92%
BQSquare 105% 98% 96% 98% 98% 97%
BlowingBubbles 101% 88% 97% 97% 94% 91%
RaceHorses 79% 83% 96% 98% 99% 98%

E
FourPeople 99% 94% - - 93% 95%
Johnny 101% 83% - - 91% 96%
KristenAndSara 98% 91% - - 90% 94%

Average 97% 93% 94% 95% 92% 94%

Table 5: BD-Rate performance of proposed fast method (tuned transform core) compared
with VTM-1.1 anchor.

Class
All Intra Random Access Low Delay

Y U V Y U V Y U V

A1 0.00% -0.05% 0.04% -0.01% 0.00% -0.11% - - -
A2 0.00% 0.01% 0.00% 0.01% 0.11% -0.07% - - -
B 0.00% 0.00% 0.00% -0.03% 0.03% 0.16% -0.01% -0.13% 0.48%
C 0.00% 0.00% 0.00% 0.04% -0.02% 0.18% 0.02% -0.06% -0.09%
D 0.01% -0.02% 0.11% 0.03% -0.25% 0.04% 0.06% -0.06% -0.43%
E 0.02% -0.03% -0.07% - - - 0.03% -0.68% -0.46%

Average 0.00% -0.01% -0.01% 0.00% 0.03% 0.06% 0.01% -0.24% 0.05%

5 Conclusion

This paper proposes a fast method aims at reducing the computational complexity for
the primary residual coding transform solution AMT, which was recently adopted by

JVET as a core contribution of the next-generation video coding framework. Inher-
ent features of DST/DCT families have been investigated comprehensively to reduce
the number of arithmetic operations. A low-complexity transform scheme with dual
implementation support has been proposed based on partial butterfly. Both theo-
retical and empirical analysis has been conducted to validate the effectiveness of the
proposed method. The results show that the proposed method achieves better time
efficiency than state-of-the-art codec VTM-1.1 without compromise on the coding
performance.

6 References

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the h.264/avc
video coding standard,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 13, no. 7, pp. 560–576, July 2003.

[2] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high efficiency
video coding (hevc) standard,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp. 1649–1668, Dec 2012.

[3] X. Zhao, J. Chen, M. Karczewicz, A. Said, and V. Seregin, “Joint separable and non-
separable transforms for next-generation video coding,” IEEE Transactions on Image
Processing, vol. 27, no. 5, pp. 2514–2525, May 2018.

[4] B. Bross, J. Chen, and S. Liu, “Jvet common test conditions and software refer-
ence configurations,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11, vol. JVET-K1001, no. Ljubljana, SI, pp. 10–18, July
2018.

[5] X. Zhao, J. Chen, M. Karczewicz, L. Zhang, X. Li, and W. J. Chien, “Enhanced
multiple transform for video coding,” in 2016 Data Compression Conference (DCC),
March 2016, pp. 73–82.

[6] A. Said, H. Egilmez, V. Seregin, and M. Karczewicz, “Complexity reduction for adap-
tive multiple transforms (amts) using adjustment stages,” Joint Video Exploration
Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, vol. JVET-
J0066, no. San Diego, US, pp. 10–20, April 2018.

[7] M. Koo, J. Heo, J. Nam, N. Park, J. Lee, J. Choi, S. Yoo, H. Jang, L. Li, J. Lim,
S. Paluri, M. Salehifar, and S. Kim, “Description of sdr video coding technology
proposal by lg electronics,” JVET-J0017, Joint Video Exploration Team (JVET) of
ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, vol. JVET-J0017, no. San
Diego, US, pp. 10–20, April 2018.

[8] Z. Zhang, X. Zhao, X. Li, and S. Liu, “Ce6-related: Fast dst-7/dct-8 with dual imple-
mentation support,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11, vol. JVET-K0291, no. Ljubljana, SI, pp. 10–18, July
2018.

[9] JVET VVC, “Versatile video coding (vvc) reference software: Vvc test model (vtm),”
https://jvet.hhi.fraunhofer.de/svn/svn_VVCSoftware_VTM/tags/VTM-1.1/,
October 2018.

[10] J. Boyce, K. Suehring, X. Li, and V. Seregin, “Jvet common test conditions and
software reference configurations,” Joint Video Experts Team (JVET) of ITU-T SG
16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, vol. JVET-J1010, no. San Diego, US,
pp. 10–20, April 2018.

