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ABSTRACT

For a variety of visual search and visual key points based nav-
igation applications, compression of visual key point features
like SIFT is an important part of the overall system that can
directly affect the efficiency and latency. In this work, we ex-
amine a new approach in visual key points compression, that
utilizes subspaces that optimized for preserving key point fea-
ture matching properties than the reconstruction performance,
and allows for a set of optimal subspaces on Grassmann man-
ifold that can better adapt to the local manifold geometry. The
simulation demonstrates that such scheme has very low over-
head in signaling subspaces, and has very much improved per-
formance on the repeatability of the keypoint matching sub-
ject to bit rate constraints.

Index Terms— Visual query, LPP, Compression, Visual
identification, Grassmann manifold

1. INTRODUCTION

Mobile phones and tablets have become pervasive devices
which are well designed for visual search. They are equipped
with large screens, high-resolution cameras, powerful CPUs
along with wireless network function which promotes the
emerging industry of query-by-capture applications on mo-
bile devices. A typical client-server image retrieval archi-
tecture is presented in Fig.1. Visual descriptors are extracted
and compressed on the mobile device. Matching is performed
on the server using the transmitted feature data as the query.
One of the most challenging work is how to minimize trans-
mission data in order to reduce network latency. Therefore,
visual compression is a key process for robust identification
of mobile visual content, especially in a very large repository.

To deal with aforementioned problems, various of feature
descriptors have been proposed to achieve robust visual con-
tent identification under rate constraints, including SIFT [1],
SURF [2], GLOH [3], CHoG [4] and RIFF [5]. To further re-
duce transmission bitrate as well as speed up retrieval process,
compact image descriptor has been developed, such as BRIEF
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[6], a binary descriptor formed from simple intensity differ-
ence tests rather than histogram of gradients, PCA-SIFT [7],
in which the dimensionality of SIFT feature is reduced with
the use of principal component analysis. Inspired by these re-
cent developments, MPEG has carried out the standardization
of Compact Descriptors for Visual Search (CDVS) [8].

However, existing methods either lays emphasis on statis-
tic information or reducing dimensionality using a single
transform which is not optimal enough to preserve their iden-
tification information. They failed to take local subspace
relations into consideration such as PCA which is a popular
technique used for dimensionality reduction in computer vi-
sion. But PCA suffers from a number of shortcomings, such
as its implicit assumption of Gaussian distributions [7]. Also,
PCA is unable to reveal nonlinear relationships.

In this work, we focus on preserving the local structure
and exploring their intrinsic nonlinear properties by incorpo-
rating Locality Preserving Projection (LPP) [9] into feature
space. The main contributions of this paper are as follows.
First, we try to design better transforms which can preserve
more local identification relationships in visual query retrieval
than PCA. Second, we hierarchically divide the feature spaces
into local subspaces to ensure a better adaptation to local ge-
ometry. Under the above two contributions, the proposed al-
gorithm is able to find more accurate transform for each query
feature as well as reveal nonlinear properties which conse-
quently will improve retrieval accuracy.

The rest of the paper is organized as follows. In section 2
we present LPP embedded compression. In section 3, we dis-
cuss the construction of binary tree and introduce Grassmann
manifold. Section 4 gives the evaluation results and conclu-
sions are made in section 5.

2. LPP EMBEDDED COMPRESSION

The dimensionality reduction approaches like Principal Com-
ponent Analysis (PCA), Linear Discriminant Analysis (LDA)
have been widely used in computer vision. However, nei-
ther of them take local neighborhood relations [9] into con-
sideration which is far more important in visual search than
achieving a minimum reconstruction error. Also, they are un-
able to reveal nonlinear relationships. However, LPP shares



Fig. 1. Mobile server model

many nonlinear projective technique properties and can pre-
serve nearest neighborhood information while rejecting far
neighbors which is essentially different from PCA and LDA.
Therefore, we involve LPP in our formulation to preserve the
nearest neighbors information in the projected space while
disregarding far away neighbors [10]. The detailed introduc-
tion of LPP will be introduced in the following two subsec-
tions.

2.1. Affinity Matrix

A graph incorporating neighborhood information will be con-
structed. Using the notion of Laplacian of the graph, an affin-
ity matrix will map the data points to a subspace. This linear
transformation optimally preserves local neighborhood infor-
mation in a certain sense [9]. Given a set of query descriptors
W = [x1, x2, ..., xN ] where xi ∈ Rn, the nearest-neighbor
relations are represented by their affinity matrixW . The affin-
ity matrix is computed according to the following equation:

Wij =

{
0 if ‖ xi − xj ‖> θ

e−‖xi−xj‖2/σ otherwise
(1)

σ and θ are the kernel parameter and the cut off threshold
respectively. σ controls the shape of the Gaussian function.
When σ increases, the affinity matrix entry Wij becomes less
sensitive to the distance ‖ xi − xj ‖. As a rule of thumb,
σ = 0.25 would be a proper choice. As shown in Fig.2, the
threshold θ controls the sparsity of affinity matrix. When θ is
larger, more neighborhood relations are preserved. However,
it is not always beneficial by keeping θ large as far neighbor-
hood relations will also be preserved which may diminish the
importance of close connections. When θ is too small, some
close neighbor connection information might be lost. There-
fore, σ and θ must be properly decided. We optimize θ by
finding the value when preserving the most matching pairs in
the original feature space. The optimized θ value is listed in
Table1.

2.2. LPP Embedding

The essence of LPP compression is to find a basis A so that
the original query descriptors xi ∈ Rn is projected into a
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Fig. 2. Sparsity of affinity matrix over multiple θ values

Table 1. Optimized θ value of each node.
Node 1 2 3 4 5 6 7 8
θ 0.17 0.49 0.40 0.10 0.26 0.31 0.39 0.19
Node 9 10 11 12 13 14 15 16
θ 0.23 0.49 0.22 0.66 0.15 0.20 0.51 0.56

low dimension feature yi = ATxi. This is accomplished by
minimizing the following objective function:

J(A) =

N∑
i

N∑
j

‖ ATxi −ATxj ‖2 Wij (2)

where A is an n × d matrix composed of d column vectors
a1, a2, ..., ad each of size n × 1 and ai is orthogonal to aj ,
∀ i 6= j. This objective function will apply heavy penalty if
close-by connections are projected far apart. Thus, the result-
ing A preserves the neighborhood relations in the projected
space. The above function can be converted into matrix form
[10]. And can be further simplified as:

min
A
{tr[ATXLXA]}, s.t. tr[ATXDXA] = 1. (3)



Diagonal matrix D is a natural constraint for data points. The
biggerD(k, k) is, the more important xk is. According to [9],
we can get A by solving the generalized eigenvalue decom-
position problem:

XLXTA = λXDXTA (4)

The column vectors a1, a2, ..., ad which form the basis matrix
A correspond to the smallest eigenvalue of the generalized
eigenvalue problem.

3. SUBSPACE INDEXING MODEL

To preserve as much local identification information as pos-
sible, a single LPP transform is not good enough in capturing
all manifold geometry characteristics in feature space. We
focus on exploring multiple transforms such that each im-
age descriptor is optimally projected to lower dimensional
space meanwhile more identification property is preserved.
In this paper, a binary tree is constructed for subspace index-
ing. When a group of new retrieval features comes, they will
be assigned to different local spaces and LPP training will be
performed to get the optimal projection for each feature de-
scriptor.

3.1. Binary-Tree Based Indexing

KD-tree is adopted in our work due to its distribution-based
property and minimization of quantization error property
compared to other local partition methods like Quad-tree.
Conventional subspace selection algorithm should be per-
formed before building data partition tree. PCA is an effective
approach for indexing.

Given a large-scale dataset which consists of n features,
it will be divided into small patches based on a KD-tree. A
kd-tree whose height is h has 2h leaf nodes and in each leaf
node, there will be n/2h features. The covariance informa-
tion obtained from PCA is utilized in the indexing. We denote
the first bases as A = [a1, a2, · · · , ad]. The indexing process
is described as follows: 1) project all sample points on the
maximum variance basis ai, find the median value of the pro-
jected samples m1; 2) start from i = 2, for each left and right
child, project the whole collection of data along the i-th max-
imum variance basis ai, find the median value mi, and split
all the children at mi; 3) increment i and repeat step 2 until
some predefined criteria for number of levels, or the number
of samples in the leaf nodes is satisfied. However, leaf nodes
may not be the most representatives for visual query index-
ing. First, as the height of the KD-tree increases, the number
of samples in each leaf node may be insufficient to get satis-
factory projection. On the contrary, if the number of samples
in each leaf nodes is too large, it will be more computationally
consuming.

3.2. Grassmann Manifold Distance Constraints

In order to find the optimal level of the binary tree such that
each descriptor can be optimally projected to low dimensional
feature space, we introduce Grassmann distance to control
growing of the binary tree.

The Grassmann manifold G(m,D) is the set of m-
dimensional linear subspaces of the RD [11]. An element
on G(m,D) can be represented by an orthonormal matrix A
of size D by m such that A′A = Im, where Im is the m×m
identity matrix. Distance between two Grassmann manifold
can be expressed as a polynomial in terms of principal angle.
Suppose A1 and A2 are two orthonormal matrices of size
D × m, the principal angles 0 ≤ θ1 ≤ · · · ≤ θm ≤ π/2
between two subspaces span(A1) and span(A2), are defined
recursively by:

cos θk = max
uk∈span(A1)

max
vk∈span(A2)

uk
′vk,

s.t. uk
′uk = 1, vk

′vk = 1,

uk
′ui = 0, vk

′vi = 0, (i = 1, ..., k − 1)

(5)

The Binet-Cauchy Grassmann distance is adopted in our
method which can be computed as follows:

dBC(A1, A2) = (1−
∏
i

cos2 θi)
1/2

= (1− det2(AT1 A2))
1/2

(6)

Global dataset will be first divided into small patches gener-
ating a hierarchy indexing tree. When a new query arrives,
the features will be assigned to different nodes with Binet-
Cauchy Grassmann distance constraints. For example in
Fig.4, the node at which will be further divided is:

Ii = argmax
i
{di} (7)

where

d1 = dBC(A3, A1) + dBC(A4, A1)

d2 = dBC(A5, A2) + dBC(A6, A2)
(8)

Training will be performed on each node thus that each
feature will have a optimized transform. Fig.3 shows the
flowchart of proposed subspace indexing model.

Since we need to select a transform from N transforms for
each visual feature, a transform index is needed to be signaled
to the decoder. However, there is no need for us to signal a
transform index for each visual feature. Different from the
natural images, the index of the visual features can be en-
coded in a very efficient way due its disorder characteristic.
We can divide all the visual features into K categories ac-
cording the transform they used. Then for each category, only
log2(N) bits is needed to signal the transform. Therefore, for
all the visual features, only K × log2(N) bits are needed to
signal the transform index.



Fig. 3. Subspace indexing model with Grassmann distance
constraints

Fig. 4. Binary tree growing scheme with Binet-Cauchy Grass-
mann distance constraints.

4. EXPERIMENTS

Experiments are conducted on CDVS [8] dataset which con-
sists of a wide variety of items including paintings, book cov-
ers, CDs, frames captured from video clips and buildings. A
brief introduction of CDVS dataset is described in Table2.

SIFT feature from CDVS dataset is adopted to implement
the experiments. SIFT features will be assigned to local sub-
spaces. LPP transforms will be computed for each node. In
our implementation, we control the number of final nodes is
16. In each node, we randomly select 4000 samples for train-
ing LPP, 4000 samples for evaluation. d0 is 0.25 and θ is op-
timized according to Table1. Multiple dimensions are evalu-
ated and the experiment results are given out in Fig.5. The red
lines represent proposed method and the blue lines represent
PCA. The results demonstrate a significant improvement in
repeatability with the same bitrate constraint. Moreover, we
also evaluated on multiple image pairs, the overall average re-
peatability with the same bitrate constraint has been improved
by 23.84%.

Table 2. A brief view of CDVS dataset
Dataset MP NMP
1. CDs, DVDs, books, 3000 29,903

business cards
(Mixed text + graphics)

2. Museum paintings 363 3639
3. Video frames 399 3999
4. Landmarks and buildings 1789 17,949
5. Common object or scenes 2549 21,307

bits/SIFT
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Fig. 5. Average repeatability of K-LPP and PCA with 16
nodes.

5. CONCLUSION

Although lots of approaches have been proposed to put vi-
sual query compression technique forward, seldom of them
take local geometric information into consideration. There-
fore, this paper proposes using multiple projective transforms
instead of single transform. LPP is incorporated to preserve
more local identification information and try to explore non-
linear matching relationships. We optimize training perfor-
mance by dividing global training samples into small patches
with Grassmann distance constraints. The proposed method is
evaluated in MPEG CDVS dataset. The experimental results
show that the proposed method which using multiple trans-
forms with optimization on Grassmann manifold can outper-
form traditional PCA in repeatability under the same bitrate.
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