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Abstract—With the popularity of mobile phones and tablets,
the explosive growth of query-by-capture applications calls for
a compact representation of query image feature. Compact
descriptors for visual search (CDVS) is a recently released stan-
dard from the ISO/IEC moving pictures experts group (MPEG)
which achieves state-of-the-art performance in the context of
image retrieval applications. However, they did not consider the
matching characteristics in local space in a large-scale database
which might deteriorate the performance. In this work, we
propose a more compact representation with SIFT descriptors
for the visual query based on Grassmann manifold. Due to
the drastic variations in image content, it is not sufficient
to capture all the information using a single transform. To
achieve more efficient representations, a SIFT Manifold Partition
Tree (SMPT) is initially constructed to divide the large dataset
into small groups at multiple scales which aims at capturing
more discriminative information. Grassmann manifold is then
applied to prune the SMPT and search for the most distinctive
transforms. The experimental results demonstrate the proposed
framework achieves state of the art performance on the standard
benchmark CDVS dataset.

Index Terms—mobile visual search, Grassmann manifold, sub-
spaces embedding, CDVS, SIFT, compact descriptors.

I. INTRODUCTION

There are millions of images and videos added to the servers
daily. For example, every second 777 photos are posted on
Instagram [1] and Snapchat now achieved over 10 billion
video views per day during the past year [2]. All these benefit
from the rapid development of the technology of mobile
devices [3]. Hand-held mobile devices, such as camera-phone,
PADs are expected to become ubiquitous platforms for visual
search and mobile augmented reality applications [4]–[6].
They have evolved into powerful image and video processing
devices equipped with high-resolution cameras, color displays,
hardware-accelerated graphics, Global Position System (GPS)
and connected to broadband wireless networks [7]. All these
functionalities enable a new class of applications which use
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the camera phone to initiate search queries about objects in
visual proximity to users [8].

Mobile Visual Search (MVS) can be used for identifying
interesting products, landmark search, comparison shopping,
searching information about movies, CDs, shops, real estate,
print media or artworks [9]. First commercial deployments of
such systems include Google Goggles [10], Ricoh iCandy [11],
Amazon Snaptell [12] and Layar [13]. Recently, Pinterest [14]
also moves to leverage visual search technologies in order to
connect consumers in the e-commerce business.

In traditional text-based search, users can get the accurate
retrieval results once the exact words are given. However, it
is far more difficult to describe an image if people want to
search for some relevant information. In the past quite a long
time, people have been working on extracting image features
and describing the image compactly and accurately [15]–[17].
Different from text-based content which is very simple and
concise, the image contains much more information and is
much more challenging to generate concise representations.
Therefore, to fully characterize the information of an image,
the existing algorithms tend to generate high-dimensional
features which are usually oversized to transmitted over the
limited-bandwidth wireless networks. Meanwhile, the require-
ments for mobile visual search (MVS) such as lower latency,
better user experience, higher accuracy pose a unique set of
challenges in practical applications. Therefore, an applicable
strategy is feature extraction [18] and feature compression are
performed at the client end while matching and retrieval is
carried out on the server.

There are two aspects researchers are working on, i.e.,
generating compact feature descriptors and compressing the
feature descriptors. Developing compact feature descriptors
is an effective solution to reduce the transmission data size.
Initial research on the topic [7], [19]–[25] demonstrated that
the transmission data can be reduced by at least an order of
magnitude via extracting compact visual features.

In order to find compact feature descriptions thus reducing
transmission bits, various of feature descriptors have been
proposed to achieve robust visual content identification under
rate constraints. The early-stage keypoint description algo-
rithms assign to each detected keypoint a compact signature
consisting of a set of real-valued elements. In [26], an image
retrieval system is proposed, based on Harris corner detector
and local grayvalue invariants. Such an approach is invariant
with respect to image rotation. The work in [27] proposes
Shape Context, a feature extraction algorithm that captures
the local shape of a patch. Edge detection is firstly performed
over a patch surrounding the point (x, y) followed by the radial
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TABLE I
OVERVIEW OF THE MOST COMMON LOCAL FEATURE DESCRIPTORS

Default size
Descriptor Year (bytes)
Schmid and Mohr [26] 1999 32
Shape context [27] 2002 144
SIFT [28] 2004 128
GLOH [29] 2005 512
HoG [30] 2005 124
SURF [31] 2006 256
DAISY [40] 2010 400
MROGH [32] 2010 192
BRIEF [34] 2011 64
BRISK [35] 2011 64
ORB [37] 2011 32
FREAK [36] 2012 64

grid, finally, a histogram centered in (x, y) counts the number
of edge points falling in a given spatial bin.

David Lowe introduces Scale Invariant Feature Transform
(SIFT) [28] which is the first to achieve scale invariance. SIFT
computes for each keypoint a real-valued descriptor, based on
the content of the surrounding patch in terms of local intensity
gradients. The final SIFT descriptor consists of 128 elements.
Given its remarkable performance, SIFT has been often used
as starting point for the creation of other descriptors. Inspired
by SIFT, Mikolajczyk and Schmid propose Gradient Location
and Orientation Histogram (GLOH) [29]. In the context of
pedestrian detection, Dalal and Triggs propose Histogram of
Oriented Gradients (HOG) [30], a descriptor based on spatial
pooling of local gradients. SURF [31] includes a fast gradient-
based descriptor. Fan et al. propose MROGH [32], a 192-
dimensional local descriptor. Along the same line, Girod and
co-workers propose rotation invariant features based on the
Radial Gradient Transform [33].

To further reduce transmission bits over the wireless
network, binary descriptors are proposed. Calonder et al.
introduce Binary Robust Independent Elementary Features
(BRIEF) [34], a local binary keypoint description algorithm.
Leutenegger et al. propose Binary Robust Invariant Scalable
Keypoint (BRISK) [35], a binary intensity-based descriptor
inspired by BRISK. Differently from BRIEF, BRISK is able
to produce scale-and rotation-invariant descriptors. Similarly
to the case of BRISK, Fast REtinA Keypoints (FREAK) [36]
uses a novel sampling pattern of points inspired by the
human visual cortex, whereas Oriented and Rotated BRIEF
(ORB) [37] adapts the BRIEF descriptor, so that it achieves
rotation invariance.

However, these descriptors are not compact enough to
transmit between remote server and client directly due to
their large size [38], [39]. Table I shows the sizes of the
descriptors. Take the SIFT as an example, the uncompressed
SIFT descriptor is conventionally stored as 1024 bits per
descriptor (128 dimensions and 1 byte per dimension). Even
a small number of uncompressed SIFT results in tens of KBs.
Hence, local feature compression of these raw features is
critical for reducing the feature size.

Inspired by these recent developments, CDVS [41] tries to
compress SIFT features as well as provides a standardized
bitstream syntax to enable interoperability in the context

of image retrieval applications and achieves state-of-the-art
performance. The local SIFT compression scheme is proposed
in [42]. The main idea is to group SIFT descriptors into two
groups according to their relative locations and perform linear
projection accordingly. Only a subset of descriptors is empir-
ically selected to achieve different coding bit rates. However
several drawbacks need to be addressed. First, it is not effective
to perform retrieval task in a large-scale dataset by applying
the same transform for all the feature descriptors. Second, with
the ear of high definition broadcasting and the improvement of
hardware, tons of high-resolution images/videos are generated
around us. This requires more efficient algorithms to further
compress these content.

In this work, we focus on exploiting the intrinsic characteris-
tics of local subspaces in SIFT [28] feature space. As depicted
in Fig. 1, a hierarchical partition tree is proposed to divide
the whole SIFT dataset into small groups. In each group, a
transform will be learned from all these SIFT descriptors in the
current group. Grassmann metric is introduced to measure the
similarity between every two transforms. A repetitive process
of merging similar transforms is devised to remove redundant
transforms. Finally, a set of optimal transforms will be used
to compress query descriptors. This work is an extension of
the previous work [43] [44] with the following additional
contributions:

• We devise a non-linear data partition tree architecture to
divide a large-scale training dataset into local patches.
The proposed scheme is dedicated to an exploration of
capturing the latent characteristics at multiple scales, dif-
ferent numbers of local spaces are generated in each level.
The affinity relationship is defined to enable optimization
for effective transformation search.

• To search for the optimal local transformations, Grass-
mann manifold is adopted to prune the data partition tree.
We propose a fast search scheme to find the optimal K lo-
cal transformations from the

∑h
i=1 li candidates. Instead

of traversing all the possibilities on the data partition
tree, we incorporate Grassmann metric to measure their
distinctiveness thus the most representative candidates
will be obtained.

• A novel projection and matching metric is devised which
involves the local space each feature belongs to. This
actually guarantees the fairness of distance computation.

• Theoretical analysis, as well as empirical evidence, are
provided to validate the necessity of the proposed data
partition tree from the information theory perspective.

• Extensive experiments are performed to evaluate the
proposed method, including pairwise matching and large-
scale image retrieval. The experimental results show
promising results when compared with state of the art
methods.

The rest of the paper is organized as follows. Section II
introduces the framework of proposed method. The proposed
SIFT Manifold Partition Tree (SMPT) is presented in Section
III. Weighted Grassmann pruning of SMPT is detailed in
Section IV. Experimental setups and results are discussed in
Section V. Section VI concludes the work followed by a
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Fig. 1. Architecture of the proposed method. SIFT Manifold Partition Tree (SMPT) is constructed to divide the training SIFT descriptors into small groups
wherein each, a transform will be learned with all the SIFT descriptors in that group resulting in a set of local transforms in multiple scales. Grassmann
metric is introduced to measure the similarity of two transforms and remove redundant ones. Those remaining optimal transforms are utilized for compression.
Conventional entropy encoder generates the bit stream.

summary.

II. THE FRAMEWORK

The framework of the proposed method is introduced in
this section. As illustrated in Figure 1, CDVS dataset is firstly
divided into training and test dataset and each with half the
number of images, including both paired images and non-
paired images. Each subset in training or test is constructed
so that the number of images belonging to each category is
proportional to the total amount of images in each category
present in the entire database. This paper addresses two
innovations in blue background, e.g., SIFT manifold partition
tree (SMPT) and Grassmann pruning.

A. Training

All the SIFT descriptors from the training dataset are used
for training. A hierarchical multi-level SIFT manifold partition
tree is constructed to divide the training samples into small
groups, a.k.a. cluster or node. In each group, a transform is
learned with all the SIFT descriptors in the current group. In
the following section without special explanation, we will refer
to global space as the transform space learned with the whole
dataset without partition, and local space as the transform
space learned with samples in small groups after SMPT.

Since the total number of local transforms might be very
large, in addition, not all these local transforms are optimal
transforms, e.g., in extreme cases, the training samples in
each local space might be only one which definitely will
not be able to train a satisfactory transform. Therefore, there
is no need to encode all the local transforms. Grassmann
metric is introduced after SMPT to prune all these available
local transform candidates. In essence, Grassmann manifold
provides a criterion to measure the similarity of two subspaces.
In practice, it is ideal to have a group of orthogonal transform
bases such that each basis captures the latent characteristics in
a unique direction. While in visual query feature compression
task, it is also desirable to have a bunch of transforms that
they are distinctive to each other. Therefore, under Grassmann
metric, we will remove those transforms which are closer to
each other and only preserve those have larger Grassmann
distances thus they are more likely to capture latent features
in a more efficient manner.

The final optimal local transforms after Grassmann pruning
will be utilized for compression. Conventional entropy encoder
is utilized for encoding to obtain bitstream.

B. Test

As discussed above, half of the randomly-sampled images
in CDVS dataset are used for test. Two main experiments
have been devised to validate the proposed method, e.g.,
pairwise matching and large-scale image retrieval experiments.
For the former one, given a query SIFT descriptor from the
test dataset, it will be assigned to one of those optimal local
transforms obtained from the training process. Corresponding
local transform will be applied on the query SIFT. It should be
noted that the optimal local transforms might be in different
level on the SMPT in order to capture hidden characteristics in
different scales. That is where the significance of the proposed
SMPT structure. Fisher vector [45] [46] aggregation has been
applied to the compressed SIFT descriptors to generate the
image-level representation for image retrieval experiments.

III. SIFT MANIFOLD PARTITION TREE

In a large-scale dataset, it is usually not sufficient to capture
the intrinsic characteristics in feature space if only one linear
transform is applied. Also, due to the variety of dataset sizes, it
is difficult to determine the appropriate size of local subspaces.
Therefore, it is necessary to design an effective data partition
scheme to divide the whole dataset into different levels of
small groups. In this work, SIFT Manifold Partition Tree
(SMPT) is proposed to divide the global dataset into small
groups at different scales.

The SMPT grows in a top-down manner and the number
of groups is hierarchically increasing. As the total number of
training samples is fixed, different numbers of groups lead to
different numbers of samples in each group. This makes it
possible to exploit latent discriminative property at different
scales. To assign each sample into a group, conventional
aggregation methods are considered, which could be roughly
divided into two categories: soft assignment and hard assign-
ment. In our case, it is preferable to use hard assignment as we
need to assign a unique local space for each training sample.
k-means is adopted in this work as it is able to preserve the
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geometric structure of the global dataset as well as its nature
of simplicity and effectiveness.

In essence, SMPT is constructed by partitioning the large-
scale SIFT dataset into small patches followed by proper de-
sign of connection relationship. The core of k-means algorithm
is an easily-understood optimization problem: given a set of
data points (in some vector space), try to position k other
points at locations that minimize the (squared) distance be-
tween each point and its closest center. We denote the training
dataset containing M SIFTs as X = {xm}, m = 1...M which
has to be partitioned into k clusters. K-means clustering solves

argmin
c

k∑
i=1

∑
x∈ci

d(x, µi) = argmin
c

k∑
i=1

∑
x∈ci

||x− µi||22 (1)

where ci is the set of points that belong to cluster i. The stan-
dard methods for solving the k-means optimization problem
are Lloyd’s [47] algorithm (a batch algorithm, also known as
Lloyd-Forgy [48]).

Since the algorithm stops at a local minimum, the initial
position of the clusters is very important. Some common
methods to initialize the centroids:

1) Forgy: set the positions of the k clusters to k observa-
tions chosen randomly from the dataset.

2) Random partition: assign a cluster randomly to each
observation and compute means.

Due to the huge size of MVS datasets, we use the Forgy
initialization to accelerate convergence. Before partitioning,
PCA is applied on the whole SIFT dataset to reduce the dimen-
sionality. There are two reasons for this dimensional reduction
operation. Firstly, the lower dimensional local features help to
produce compact final image representation as the current in
image retrieval. Secondly, applying PCA could help to remove
noise and redundancy; hence, enhancing the discrimination
[49].

As illustrated in Fig. 2, in each level, the dimension-
reduced SIFT descriptors of the whole dataset are divided
into small groups via k-means. n(i)j indicates the j-th node
on the i-th level, where i = 1, . . . , h. It should be noted
that all small groups from certain level are directly from
the whole dataset, not from its parent level, e.g., combining
all SIFT samples from any level would constitute the whole
dataset. The association is specified in a bottom-up manner.
Euclidean distance is calculated between current child-cluster
centroid and its parent-cluster centroid. Current child-cluster
is associated with the nearest parent-cluster.

At each node, a transform (PCA in this paper) is trained
using all full-dimension (128-d) SIFT descriptors. So far, all
the transform candidates are obtained.

IV. WEIGHTED GRASSMANN PRUNING OF SMPT
As we discussed above, the partition on the global space

serves as the first stage of the proposed work. However, leaf
nodes may not be the best choice for retrieval because of the
following reasons. First, with the increase of the SMPT level,
the number of samples associated with each leaf node will
decrease. Thus there exist a scenario where the number of
samples is not sufficient to train a reliable transform. Take the
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Fig. 2. The SMPT is built in a top-down manner. Each level has li clusters
obtained from k-means aggregation, where n(i)

j represents the j-th node on
the i-th level. The affiliation of child-cluster is processed in a bottom-up
manner. Each child-cluster is associated with one parent-cluster according to
Euclidean distance.

extreme case as an instance, there will be only one sample
in each leaf node when the number of nodes equals the total
number of samples in the whole dataset. Second, in practice,
it is expensive to encode all available transform candidates.
Therefore, it is desirable to devise a scheme to search for a
handful of optimal transforms.

We introduce Grassmann manifold [50], [51] into the in-
dexing model for manipulating the leaf nodes derived from
the data partition tree. Each point on Grassmann manifold is
a subspace by the columns of an orthonormal matrix which
is invariant to any basis. The notion of principle angle and
Grassmann distance allow us to evaluate the homogeneity
of the SIFT feature space. In this section, we first briefly
review the Grassmannian metric and related concepts, i.e.,
principal angles. Then we introduce the details of applying
the Grassmann metric to the SMPT.

A. Grassmann Manifold
The Grassmann manifold G(d,D) is the set of d-

dimensional linear subspaces of the RD [50]. Consider the
space R(0)

D,d of all D× d matrices, i.e., A ∈ RD×d. The group
of transformation A = AS, where S is a d×d full-rank square
matrix, defines an equivalence relation in R(0)

D,d.

A1 = A2 if span(A1) = span(A2)

where A1, A2 ∈ R(0)
D,d

(2)

Therefore, the equivalence classes of R(0)
D,d are one-to-one

correspondence with the points on the Grassmann manifold
G(d,D), i.e., each point on the manifold represents a sub-
space. According to the definition, each point on Grassmann
manifold is a subspace. Therefore, to measure the distance
between two points on the Grassmann manifold is equivalent
to measure the similarities between two subspaces. Principle
angle [50]–[52] is a geometrical measure between two sub-
spaces. Fig. 3 has shown the relationship between principal
angle and Grassmann manifold. Suppose A1 and A2 are two
orthonormal matrices A1, A2 ∈ RD×d on the Grassmann
manifold, the principal angles 0 ≤ θ1 ≤ · · · ≤ θd ≤ π/2
between two subspaces span(A1) and span(A2), are defined
recursively by:

cos θk = max
uk∈span(A1)

max
vk∈span(A2)

uk
′vk,

s.t. uk
′uk = 1, vk

′vk = 1,

uk
′ui = 0, vk

′vi = 0, (i = 1, ..., k − 1)

(3)
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Fig. 3. Principal angles and Grassmann distances. Let span(A1) and span(A2) be two subspaces in the Euclidean space RD on the left. The distance
between two subspaces can be measured by the principle angles θ = [θ1, θ2, . . . , θm]T .

The vectors (u1, u2, . . . , ud) and (v1, v2, . . . , vd) are principal
vectors of the two subspaces. θk is the kth smallest angle
between two principal vectors uk and vk.

In literature, there are a variety of methods to compute
the principal angles between two subspaces. One numerically
stable way is to apply Singular Value Decomposition (SVD)
on the product of the two matrices A′1A2, i.e.,

A′1A2 = USV ′ (4)

where U = [u1, u2, . . . , ud], V = [v1, v2, . . . , vd] and S =
diag(cos θ1, . . . , cos θd). The cosine values of principal angles
cos θ1, . . . , cos θd are known as canonical correlations [52].

B. Subspace Optimization with Grassmann Metric

The distance on Grassmann manifold is defined as follows.
A distance is referred to as Grassmann distance if it is invariant
under different basis representations. Grassmannian distances
between two linear subspaces span(A1) and span(A2) can be
described by principal angles. The smaller principal angles are,
the more similar two subspaces are i.e., the closer they are on
the Grassmann manifold.

In literature, various Grassmann distance metrics based on
principal angle have been developed for different purposes,
e.g., projection, Binet-Cauchy, max correlation, min correla-
tion, Procrustes metric [50]. Since the distance metrics are
defined with a particular combination of the principal angles,
the best distance depends highly on the probability distribution
of the principal angles of the given data. Among all these
metrics, max correlation and min correlation only use the max-
imum and minimum principal angle, respectively, thus may
perform less stable when the noise in the data varies. Another
criterion for choosing the distance is the degree of structure in
the distance. Without any structure, a distance can be used only
with a single K-Nearest Neighbor (KNN) algorithm. When a
distance having an extra structure such as triangle inequality,
for example, we can speed up the nearest neighbor search by
estimating lower and upper limits of unknown distances. From
this point of view, only Binet-Cauchy metric and projection
metric are the most structured metrics as they are induced from
a positive definite kernel [50]. In application, they are also the
most commonly used Grassmann metrics. Therefore, in the
final experimental section, both projection distance and Binet-
Cauchy Grassmann distance will be evaluated. The projection

global

1

8 9 10 11 12 13 14 158 9

4

10 11

5

12 13

6

14 15

7

2 3

1

8 9 10 11 12 13 14 158 9

4

12 13

6

14 15

7

2 3

5

1

8 9 10 11 14 158 9

4 6

3

10 11

5

2

7

12 13

Fig. 4. An example of a 3-level SMPT showing the process of pruning. The
top figure is the initial state where the query samples are assigned to the leaf
nodes. According the merge cost, 10 and 11 are merged to 5; 14 and 15 are
merged to 7; 8, 9 and 5 are merged to 2.

Grassmann metric and Binet-Cauchy Grassmann metric can
be computed as follows, respectively:

dP (A1, A2) = (
m∑
i=1

sin2 θi)
1/2 (5)

dBC(A1, A2) = (1−
∏
i

cos2 θi)
1/2 (6)

We denote the number of nodes in each level as L = {li},
where i = 1, . . . , h. Hence, the total number of available
transforms is

S =
h∑

i=1

li (7)

Grassmann metric is applied to measure the similarities be-
tween the candidates. The similarity between every two can-
didates will be measured. The two transforms with the shortest
Grassmann distance indicates they are the most similar, thus
should be merged according to the principle of maximizing
distinctiveness. Let us denote all the S available transforms as
{A1, . . . , AS}, each of which is trained with all the SIFT de-
scriptors in that node. The number of training SIFT descriptors
in each node is W = {w1, . . . , wS}.
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TABLE II
PAIR-WISE MATCHING RESULTS WITH AND WITHOUT PSEUDO-INVERSE

PROJECTION.

test #
preserved dimensionality kd

w/o pseudo-inverse w/ pseudo-inverse
4 8 16 32 4 8 16 32

1 0.23 0.54 0.69 0.73 0.41 0.71 0.75 0.76
2 0.27 0.57 0.65 0.74 0.39 0.65 0.72 0.80
3 0.19 0.49 0.62 0.72 0.41 0.63 0.73 0.77
4 0.28 0.47 0.59 0.75 0.38 0.69 0.74 0.78
5 0.32 0.51 0.63 0.74 0.42 0.65 0.77 0.75
6 0.24 0.48 0.64 0.76 0.37 0.75 0.73 0.76
7 0.26 0.52 0.66 0.70 0.39 0.68 0.70 0.74
8 0.28 0.51 0.62 0.73 0.39 0.68 0.73 0.76
9 0.30 0.55 0.70 0.75 0.40 0.65 0.75 0.79

10 0.29 0.54 0.67 0.71 0.40 0.74 0.73 0.78
Avg. 0.27 0.52 0.65 0.73 0.40 0.68 0.74 0.77

Before the merge, suppose the query SIFT descriptors are
assigned to R leaf nodes. A merge cost L is calculated before
each merge operation. Children nodes of which LCA node
with lowest merge cost will be merged. First, we need to find
out the Lowest Common Ancestor (LCA) of any two existing
nodes. As we have R nodes currently, if each two share an
LCA node, there would be C2

R LCA nodes in total. Let us use
G represent C2

R for simplicity. The LCA of Node i and Node
j can be expressed as follows.

Ãij = LCA(Ai, Aj), i 6= j, and i, j = 1, . . . , S (8)

It should be noted that not all LCA node has only two children.
For example in Figure 4, Ã8,9 = Node4 which only has two
children 8 and 9, while Ã5,8 = Node2 has three children 8,
9, and 5. We denote the number of children each LCA node
has as {t1, . . . , tG}. The merge cost of the g-th LCA Ãg is
calculated as

Lg =

tg∑
i=1

w(A
(g)
i ) × dGSM (Ãg, A

(g)
i ), (g = 1, . . . , G) (9)

where A(g)
i is the i-th child of Ãg , w(A

(g)
i ) is the number of

SIFT descriptors in node A(g)
i , dGSM (a, b) is the Grassmann

distance between transform a and b. All the children of the
LCA which has the lowest cost among all the G LCA nodes
will be removed and current LCA node will be a new node.

Fig. 4 is an example of SMPT showing the procedure of
merge similar transforms to achieve the final most distinctive
local transforms. At initial status, there are 8 leaf nodes on a
3-level SMPT. The objective is to search for 4 most represen-
tative transforms. The first step is to find the corresponding
LCAs according to Eq. 8. Then calculate all the merge cost
according to Eq. 9. Finally, find the LCA with minimum merge
cost and all the children corresponding to that LCA will be
merged. This process iterates until the number of remaining
nodes is 4. By incorporating Grassmann metric, the most
distinctive transformations can be achieved.

C. Projection and Matching

Given N query SIFT features F = {f1, . . . , fN} and K
optimal local transforms {A1, . . . , AK}, where fn ∈ R128 is

a SIFT descriptor. Each query feature in F is assigned to one
of the K nodes. Suppose feature fn is assigned to transform
Ak, the projection is applied as follows.

f (t)n = (fn − µk)×Ak (10)

where µk ∈ R128 is the mean of all the training samples in
node Ak, f (t)n is the representation of feature fn in transform
domain.

In transform domain, given a descriptor, its nearest neighbor
is searched across the transform domain. The descriptor which
has the smallest distance will be marked as its matching pair.
Given two projected features f (t)n1 and f (t)n2 , different schemes
are applied in matching procedure if they are associated with
different optimal transforms.

It is not fair if computing the distance between two pro-
jected features directly. Because they are in different local
spaces, their projections are based on different centers, i.e.,
centroids are different. Directly computing their distance may
exaggerate their real distance. As we do not have the original
feature information, so using pseudo inverse is an appropriate
way to reduce the error introduced in this procedure.

Suppose fn1 is associated with transform Ak1 and fn2 is
associated with transform Ak2

. If they are in the same local
space, i.e. k1 = k2, the distance between these two features
is Euclidean distance. If they are in different clusters, i.e.
k1 6= k2, they have to be converted into a uniform local space
via pseudo inverse. Empirically, the number of samples in
each cluster while training is the factor to determine in which
local space to convert to, i.e., the node with more training
samples will be selected. Let us use wk1

and wk2
representing

the number of training samples used to train Ak1
and Ak2

,
respectively, and wk1

> wk2
, the distance is calculated as

follows.

dij =

{
‖f (t)n1 − f

(t)
n2 ‖L2

if k1 = k2

‖f (t)n1 − f
(inv)
n2 ‖L2

otherwise
(11)

f (inv)n2
= (f (t)n2

× pinv(Ak2
) + µk2

− µk1
)×Ak1

(12)

where pinv is pseudo inverse.
To validate the pseudo-inverse hypothesis, we randomly

select 10k matching SIFT pairs from CDVS dataset and check
the matching performance with or without pseudo-inverse. The
10k matching SIFT pairs will be assigned to one of 16 leaf
nodes of SMPT. Projection with and without pseudo-inverse
will be applied to calculate the distance of each SIFT pair in
projection domain. Multiple numbers of preserved dimensions
are considered. The top-3 accuracy is used to measure the
pairwise matching performance. This process is repeated 10
times and different SIFT pairs are used for each time. The
accuracy has been listed in Table II.

As can be observed in Table II, the pairwise matching
performance of the proposed method with pseudo-inverse is
better than that without pseudo-inverse. The superiority in low-
dimension cases is more obvious than in high-dimension cases.
This might be caused by that in low-dimension circumstances,
the distance is more sensitive to noise as more information loss
has been induced due to dimensionality reduction.
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V. EXPERIMENTS

Extensive tests have been conducted to evaluate the per-
formance of the proposed method. There are three parts in
this chapter: 1) Evaluation framework description. 2) Energy
compaction validation and analysis. 3) The final results of
pairwise matching and image retrieval experiments along with
the analysis of computational complexity.

A. Evaluation Framework

The experiments are performed over CDVS [41] dataset
which consists 10,115 matching image pairs and 112,175
non-matching image pairs. The dataset contains images of 5
categories: graphics, paintings, video frames, buildings and
common objects. They were captured with a variety of camera
phones and under widely varying lighting conditions. A brief
summary is shown in Table III. As stated in Section II, half
the number of randomly-sampled images are used for training
and the other half for test, including both paired images and
non-paired images. The number of images in each category
is proportional to the percentage of the number of images in
current category to that of the total number of images in the
dataset.

Before constructing the SMPT for pairwise matching and
image retrieval experiments, we preprocess the data with PCA
to reduce the dimensionality. The lower dimensional SIFT
features help to produce compact representation. In addition,
applying PCA could help to remove noise and redundancy;
hence, enhancing the discrimination [49]. A 7-level SMPT
is constructed with the number of nodes in each level of
L = {2, 4, 8, 16, 32, 64, 128} e.g., the first level has 2 nodes,
the second level has 4 nodes, etc. The connection relationship
is processed in a bottom-up manner as illustrated in Fig. 2.
In each node on the SMPT, a local PCA transform will be
achieved using full-dimensionality (128-d) SIFT descriptors
in that node thus resulting in a total number of

∑7
i li = 254

local transforms. The Grassmann pruning is applied to obtain
the final K = {4, 8, 16} optimal local transforms.

The energy compaction validation experiment provides em-
pirical evidence from the information theory perspective. The
objective is to demonstrate the necessity of partitioning the
whole dataset into small groups in order to obtain local
transforms. The True Positive Rate (TPR) at less than 1%
False Positive Rate (FPR) is reported in the pairwise matching
experiment. In compliance with CDVS anchor, average bits
per descriptor is used to describe the bit stream. SIFT feature
extraction and selection is performed in CDVS software,
resulting in about 300 SIFT descriptors for each image.
Euclidean distance is used to measure the distance in the
transform domain. The mean Average Precision (mAP) is used
to evaluate the image retrieval performance. The results of
each subset are reported for both pairwise matching and image
retrieval experiments.

B. Energy Compaction Validation

To study the effects of SMPT, we need to verify the coding
efficiency which can be measured by probability distribution
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Fig. 5. SIFT descriptor probability distribution and energy preservation plots
in transform domain.

histogram. If local transforms are more efficient, the data
distribution in transform domain should be more compact, i.e.,
the probability of a value closer to zero is larger.

We randomly select 60 images from each subset and ex-
tract corresponding SIFT descriptors, thus comprises a total
of 90k SIFT descriptors. Training samples are achieved by
randomly selected by 70%, and the other 30% is used for the
test. Before constructing the SMPT, dimensionality reduction
technique (e.g., PCA) is applied to reduce the dimension.
The dimensionality-reduced SIFTs are used to build a 5-
level SMPT with the number of nodes in each level L =
{4, 8, 16, 32, 64}. A PCA local transform is trained using all
the full-dimensionality (128-d) SIFT descriptors in each node.
To remove redundant local transforms, they will be pruned on
the Grassmann manifold to achieve final 8 local transforms
from

∑5
i=1 li = 124 available candidates.

After the SMPT model is obtained, the test SIFT descriptors
are assigned to one of the 8 optimal nodes according to the
Euclidean distance. The test SIFT descriptors in each node will
be projected separately using the associated local transform.
Fig. 5 shows the probability distribution and preserved energy
in the transform domain. It is observed that with SMPT
more data value aggregates around zero which is definitely
beneficial for compression. The preserved energy is calculated
by cumulatively summing the probability within range τ away
from the origin. When we set the τ = 200, 4.21% more
information will be preserved with SMPT than without SMPT.

C. Experimental Results

To compare the difference of Grassmann projection dis-
tance and Grassmann Binet-Cauchy distance, repeatability
experiments are conducted using SIFT descriptors from all 5
categories. Table IV shows the repeatability results of CDVS,
proposed method with Grassmann projection distance and the
proposed method with Binet-Cauchy distance, respectively.
The bitrate variation of the proposed method is achieved by
adjusting the number of the preserved dimensionality of SIFT
descriptors. It is observed that the proposed methods perform
better than CDVS. Compared with the best repeatability of
CDVS, the proposed SMPT with Grassmann projection and
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TABLE III
OVERVIEW OF MPEG CDVS DATASET.

# # matching # non-matching # retrieval Mean # relevant
Dataset Category images pairs pairs queries images per query

1 Graphics 2500 3000 30000 1500 2
2 Museum Paintings 455 364 3640 364 1
3 Video Frames 500 400 4000 400 1
4 Buildings 14935 4005 48675 3499 4
5 Common Objects 10200 2550 25500 2550 3
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Fig. 6. Results of True Positive Rate (TPR) of the proposed method for SIFT pairwise matching. The proposed method controls bitrate by adjusting the
feature dimension in the transform domain, while CDVS provides fixed bitrate configuration. The number of optimal transforms is set as K = {4, 8, 16}.

Binet-Cauchy achieves about 4.31% and 4.63% improvement
with comparable bitrate, respectively. No significant difference
has been observed between two Grassmann distance metrics
but Binet-Cauchy is slightly better than projection.

Binet-Cauchy is adopted for pairwise matching and image
retrieval experiments. Figure 6 and Figure 7 show the pair-
wise matching and image retrieval results for each subset,
respectively. It can be observed that the proposed method
achieves the best performance when K = 8, where K is
the number of optimal transforms after Grassmann pruning.
The performance increases when K decreases from 16 to 8,
but deteriorates when continue decreasing from 8 to 4. This
phenomenon demonstrates that there exists an optimal solution
by adjusting the number of transforms. It is a trade-off between
the number of training samples to train a transform and the
number of transforms utilized to perform projection.

At best performance, it can be seen that the proposed meth-
ods perform better than CDVS with only a few exceptions in
buildings and Common Objects. As the proposed method con-
trols bitrate by adjusting the reduced feature dimensionality,
it provides more flexibility in practice. In pairwise matching

experiments, the proposed method achieves an improvement
of 7.1%, 5.3%, 2.4%, 4.8% and 4.6% at lowest bitrate for
Graphics, Paintings, Video Frames, Buildings and Common
Objects, respectively. At highest bitrate, an improvement of
0.4%, 0.7%, 0.6% and 0.35% has been observed for Graphics,
Paintings, Video Frames and Common Objects, respectively.
While in Buildings, the proposed method is 0.6% worse
than CDVS. Similar patterns can been witnessed in image
retrieval results. The improvement at lowest bitrate are 4.98%,
3.84%, 2.03%, 3.87% and 4.54% for Graphics, Paintings,
Video Frames, Buildings and Common Objects, respectively.
At highest bitrate, the proposed method achieves 1.23%,
0.66%, 0.65% and 0.40% improvement for Graphics, Video
Frames, Buildings and Common Objects, respectively. A tiny
drop of 0.51% exists in Buildings. Buildings and Common
Objects contain more images and the content vary more
substantially in illumination and deformation and contain more
undistinguishable distractors than the other three categories.
That might be the reason causing relatively lower performance
in these two categories.

The experiments are conducted on a Windows PC with
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Fig. 7. Results of mean Average Precision (mAP) of proposed method for image retrieval. The proposed method controls the bitrate by adjusting the preserved
dimension and CDVS provides fixed descriptor lengths. The number of optimal transforms is set as K = {4, 8, 16}.

TABLE IV
REPEATABILITY COMPARISON OF GRASSMANN PROJECTION DISTANCE

AND BINET-CAUCHY DISTANCE WITH CDVS.

CDVS Proposed Projection Proposed Binet-Cauchy
bitrate repeatability bitrate repeatability bitrate repeatability

32 51.00% 29 52.37% 26 47.48%
- - 58 68.25% 56 67.92%

65 67.83% 84 72.99% 82 73.72%
- - 105 76.09% 108 76.68%

103 72.70% 137 78.32% 134 78.20%
- - 159 79.27% 152 79.54%

129 74.14% 182 80.03% 176 79.54%
- - 202 80.44% 199 80.76%

205 76.13% 228 80.76% 222 80.92%
- - 248 80.93% 250 81.17%

Intel Core CPU i7-7700HQ 2.80GHz. The proposed method
requires an average of 1.37 milliseconds per query in pairwise
matching experiments for highest performance. In image re-
trieval experiments, an average of 2.49 seconds is required per
query at highest performance. The CDVS has been tested using
the same dataset and achieves an average of 0.43 milliseconds
and 1.84 seconds per query for pairwise matching and image
retrieval experiments, respectively. Future work will focus on
reducing the computational complexity.

VI. CONCLUSION

In this paper, we present an effective framework to produce
more discriminative image representations for image retrieval
using SIFT feature. In the proposed framework, we propose
to enhance the discriminative properties in two main steps: i)

Use different transforms for query features to capture latent
characteristics in multiple scales by constructing SMPT. ii)
Prune available local transforms on SMPT to achieve optimal
ones by introducing Grassmann metric. Extensive experimen-
tal results show that the proposed method achieves promising
performance comparing with state of the art. Deep learning-
based methods are future research directions as well as a
further push to reduce the computational complexity for the
proposed scheme.
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