

Visual Query Compression with Embedded Transforms on Grassmann Manifold

Zhaobin Zhang, Li Li and Zhu Li Dept of Computer Science & Electrical Engineering University of Missouri, Kansas City <u>lizhu@umkc.edu</u>

Outline

- Background
- Related work
 - Compact feature descriptors, e.g., SURF, SIFT, etc.
 - MPEG: Compact Descriptor Visual Search
- Proposed algorithm
 - Hierarchical partition tree
 - Local transform optimization via Grassmann manifold
- Experiments
- Conclusions

Mobile Visual Search

- Mobiles and tablet have become an indispensable part of our lives.
- Wireless has a limited bandwidth.
- Challenge: How to minimize transmission bits to reduce network latency?

Related work

- Compact feature descriptors
 - SURF (Speeded-Up Robust Features) [Herbert, 2008]
 - SIFT (Scale-Invariant Feature Transform) [David G. Lowe, 2004]
 - MPEG: CDVS [2016]

Overview of the MPEG-CDVS Standard, Ling-Yu, 2016

- High-dimension image descriptors are not efficient, e.g., 128 for SIFT.
- A single transform is not sufficient to capture all the identification information.

Proposed algorithm

- Hierarchical partition tree
 - Apply PCA for the current node
 - Find the median value for the variance for all dimensions
 - Split into left and right child node
- Piece-wise linear projection
 - Apply PCA at local subspaces
- Grassmann optimization
 - Merge the nodes which have the smallest Binet-Cauchy Grassmann distance
 - Stops when predefined condition is satisfied, e.g., number of transforms

Hierarchical partition tree

Given n features in d dimensions, and the height of kd-tree ht, the procedure of constructing the data partition tree are:

- 1. Calculate the variance of the first dimension $\{v_1, v_2, ..., v_n\}$.
- 2. Find the median of the variance m_1 .
- 3. Split the whole space into two parts whose border is m_1 .
- 4. For i = 1 (level one), calculate the variance of each dimension, find the median of the dimension which has the largest variance and split at the median.
- 5. Repeat step 4 until finish the partition.

Subspace distance on Grassmann manifold

- Given two subspace models A₁ and A₂, find the rotations that can max align two:
 - Rotating A_1 and A_2 in G(p, d) such that they are maximally aligned

$$\max_{R_1, R_2} trace(R_1^T A_1^T A_2 R_2), \quad s. t. R_1, R_2 \in O_p$$

- Solving by SVD:

$$[S, V, D] = svd(A_1^T A_2)$$

- The diagonal of $S = [s_1, s_2, ..., s_p]$ are the principle angles.

$$\theta_k = \cos^{-1}(s_k)$$

- Binet-Cauchy distance
 - Def: $d_{bc}(A_1, A_2) = (1 \prod_i \cos^2 \theta_i)^{1/2}$

Principal angles

- The principal angles between two subspaces:
 - For A_1 and A_2 in G(p, d), their principal angles are defined as

$$\cos \theta_{k} = \max_{u_{k} \in span(A_{1}), v_{k} \in span(A_{2})} u_{k}^{T} v_{k}$$

$$s.t. \begin{cases} u_{k}^{T} u_{k} = 1, v_{k}^{T} v_{k} = 1 \\ u_{k}^{T} u_{k} = 0, v_{k}^{T} v_{k} = 0 \end{cases}$$

where $\{u_k\}$ and $\{v_k\}$ are called principal dimensions for $span(A_1)$ and $span(A_2)$

Local transform optimization

- Merge occurs when two nodes have the shortest Grassmann distance.
- 1. Merge on Grassmann Manifold
 - The set of existing k node

$$N = \{n_1, n_2, \dots, n_k\}$$

The number of samples in each node

$$W = \{w_1, w_2, \dots, w_k\}$$

The distance between two nodes

$$D_{ij} = w_i \times d_{ic} + w_j \times d_{jc}$$

where $d_{ic} = d_{BC}(i, c)$, c is the Lowest Common Ancestor of i and j

- Nodes having the shortest distance will be merged.
- Finally we get *m* optimal transforms.
- 2. Only $m \times \log k$ bits are needed to signal the transform due to the disorder characteristic of SIFT feature.

H and I are merged to D

Experiment dataset

- Evaluate in CDVS dataset
- Input: SIFT features
- Output: repeatability and bitrate
- Select k = 8 transforms from n = 127 (kd-tree height ht = 6)

Table 2. A brief view of CDVS dataset		
Dataset	MP	NMP
1. CDs, DVDs, books,	3000	29,903
business cards		
(Mixed text + graphics)		
2. Museum paintings	363	3639
3. Video frames	399	3999
4. Landmarks and buildings	1789	17,949
5. Common object or scenes	2549	21,307

Reconstruction Error

• MSE at different number of quantization bins

 Average reduction: 47.12%, 35.89% and 34.31% respectively at kd=4, 6 and 8.

Query Accuracy

• Repeatability at different number of quantization bins

• Average improvement: 134.48%, 35.27% and 5.26% respectively at kd=4, 6 and 8.

Conclusions

- In large-scale dataset retrieval tasks, data partition tree is efficient for exploiting the local matching characteristics.
- Multiple transforms can help preserve more identification information thus improve retrieval accuracy.
- Grassmann distance which is used to measure the similarity between two orthogonal transforms can be used in feature space to optimized the projections.

Thanks!